Monitoring cell trafficking in vivo noninvasively is critical to improving cellular therapeutics, drug delivery, and understanding disease progression. In vivo imaging, of which magnetic resonance imaging (MRI) is a key modality, is commonly used for such monitoring. (19)F MRI allows extremely specific detection and quantification of cell numbers directly from in vivo image data, longitudinally and without ionizing radiation. We used fluorocarbons previously used in blood substitutes and imaging agents for ultrasound and computed tomography to synthesize monodisperse nanoparticles that are stable at 37 degrees C and can be frozen for storage. These large (19)F labeling compounds are insoluble in aqueous environments and often emulsified, typically forming emulsions unsuitable for long-term storage. Instead, we used a non-toxic polymer already in clinical use, poly(D,L-lactide-co-glycolide), to encapsulate a range of (19)F compounds. These nanoparticles can be customized in terms of content (imaging agent, fluorescent dye, drug), size (200-2000 nm), coating (targeting agent, antibody) and surface charge (-40 to 30 mV). We added a fluorescent dye and antibody to demonstrate the versatility of this modular imaging agent. These nanoparticles are adaptable to multimodal imaging, although here we focused on MRI and fluorescence imaging. Here, we imaged primary human dendritic cells, as used in clinical vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2010.05.069DOI Listing

Publication Analysis

Top Keywords

imaging
9
vivo imaging
8
19f mri
8
imaging agent
8
fluorescent dye
8
customizable multi-functional
4
multi-functional fluorocarbon
4
nanoparticles
4
fluorocarbon nanoparticles
4
nanoparticles quantitative
4

Similar Publications

With the advancement of precise hepatobiliary surgery concepts, the diagnostic and therapeutic approaches for hepatic echinococcosis have undergone significant transformations. However, whether these changes have correspondingly improved patient outcomes remains unclear. A retrospective analysis of these changes will provide crucial guidance for the prevention and treatment of hepatic echinococcosis.

View Article and Find Full Text PDF

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

The study aimed to determine if virtual reality (VR) games could enhance neuromuscular control and improve anticipatory and compensatory strategies in ball-kicking for soccer players. It was a single-blind randomized clinical trial involving 32 male soccer players with chronic ankle instability. Participants were divided into two groups: VR games and balance training.

View Article and Find Full Text PDF

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide with heterogeneous histopathological phenotypes. Although IgAN with membranoproliferative glomerulonephritis (MPGN)-like features has been reported in children and adults, treatment strategies for this rare IgAN subtype have not been established. Here, we present the case of a 56-year-old man with no history of kidney disease who initially presented with nephrotic syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!