Novel biodegradable cross-linked co-polymers were prepared from poly(propylene glycol) diglycidylether (PPGDGE) and poly(ethylene imine) (PEI). PPGDGE and PEI were mixed at ambient temperature with varying PEI concentrations of 10, 15, 18.5, 25, 30, 40 and 50 wt%; the homogenous PPGDGE/PEI mixtures obtained were cured at elevated temperatures, resulting in formation of PPG-PEI cross-linked co-polymers via ring-opening reaction of PPGDGE with PEI. The physicochemical and biological properties of these co-polymers were dependent on the PEI content and the extent of curing reaction. The glass transition temperature of PPG-PEI cross-linked co-polymers varied in the range from -14 to +42°C, while the co-polymers displayed composition-dependent mechanical behavior, from brittle to ductile with increasing PEI content from 18.5 wt% to 40 wt%. Chinese hamster ovary (CHO) cells were cultured on the PPG-PEI co-polymers; the MTT assay was used to measure cell viability and determine the cytotoxicity. The cell viability rate, relative to tissue-culture polystyrene (TCPS), increased from 49% to 125% with increasing PEI content from 18.5 wt% to 40 wt%. Although epoxy monomers usually exhibit cytotoxicity, the epoxy groups were exhausted via curing reaction in the fully cross-linked co-polymers. The PEI-cured PPG epoxy resin, i.e., PPG-PEI cross-linked co-polymers obtained in this study, showed excellent biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1163/092050610X487747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!