Background: Understanding the genetic basis of adaptive changes has been a major goal of evolutionary biology. In complex organisms without sequenced genomes, de novo transcriptome assembly using a longer read sequencing technology followed by expression profiling using short reads is likely to provide comprehensive identification of adaptive variation at the expression level and sequence polymorphisms in coding regions. We performed sequencing and de novo assembly of the bank vole heart transcriptome in lines selected for high metabolism and unselected controls.

Results: A single 454 Titanium run produced over million reads, which were assembled into 63,581 contigs. Searches against the SwissProt protein database and the ENSEMBL collection of mouse transcripts detected similarity to 11,181 and 14,051 genes, respectively. As judged by the representation of genes from the heart-related Gene Ontology categories and UniGenes detected in the mouse heart, our detection of the genes expressed in the heart was nearly complete (> 95% and almost 90% respectively). On average, 38.7% of the transcript length was covered by our sequences, with notably higher (45.0%) coverage of coding regions than of untranslated regions (24.5% of 5' and 32.7% of 3'UTRs). Lower sequence conservation between mouse and bank vole in untranslated regions was found to be partially responsible for poorer UTR representation. Our data might suggest a widespread transcription from noncoding genomic regions, a finding not reported in previous studies regarding transcriptomes in non-model organisms. We also identified over 19 thousand putative single nucleotide polymorphisms (SNPs). A much higher fraction of the SNPs than expected by chance exhibited variant frequency differences between selection regimes.

Conclusion: Longer reads and higher sequence yield per run provided by the 454 Titanium technology in comparison to earlier generations of pyrosequencing proved beneficial for the quality of assembly. An almost full representation of genes known to be expressed in the mouse heart was identified. Usage of the extensive genomic resources available for the house mouse, a moderately (20-40 mln years) divergent relative of the voles, enabled a comprehensive assessment of the transcript completeness. Transcript sequences generated in the present study allowed the identification of candidate SNPs associated with divergence of selection lines and constitute a valuable permanent resource forming a foundation for RNAseq experiments aiming at detection of adaptive changes both at the level of gene expression and sequence variants, that would facilitate studies of the genetic basis of evolutionary divergence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996923PMC
http://dx.doi.org/10.1186/1471-2164-11-390DOI Listing

Publication Analysis

Top Keywords

bank vole
12
heart transcriptome
8
genetic basis
8
adaptive changes
8
coding regions
8
454 titanium
8
representation genes
8
mouse heart
8
genes expressed
8
untranslated regions
8

Similar Publications

Is the risk of bank vole infection with cestodes related to the population dynamics regime?

J Helminthol

January 2025

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, 8th Marta St. 202, Yekaterinburg620144, Russia.

The bank vole ( (Schreber, 1780)) is the dominant species in the primary fir-spruce forests of the Visim State Biosphere Reserve in the Middle Urals. Here, we studied the long-term population dynamics of small mammals and infection rates with cestode larvae (Cestoida) of bank voles from 1995 to 2021. In addition to the traditionally studied risk factors of parasite infection (e.

View Article and Find Full Text PDF

The brain interactome of a permissive prion replication substrate.

Neurobiol Dis

January 2025

Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue.

View Article and Find Full Text PDF

Most members of the genus Orthonairovirus, represented by Crimean-Congo hemorrhagic fever virus and Nairobi sheep disease virus, are tick-borne, and some have become a public health concern in recent years. Here, we report the isolation and genetic and biological characterization of a new orthonairovirus, designated as "Iwanai Valley virus" (IWVV), from Ixodes ovatus ticks in Hokkaido, Japan. The amino acid sequence of the viral nucleoprotein (NP) was found to be 34-45% identical to those of known orthonairoviruses.

View Article and Find Full Text PDF

AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation.

View Article and Find Full Text PDF

Gut microbial diversity influences the health and vitality of the host, yet it is itself affected by internal and external factors, including land-use. The impact of land-use practices on wild rodents' gut microbiomes remains understudied, despite their abundance and potential as reservoirs for zoonotic pathogens. We examined the bacterial and fungal gut microbiomes of bank voles (Myodes glareolus) and common voles (Microtus arvalis) across grassland and forest habitats with varying land-use intensities and types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!