Background: In mammals, the dynamics of DNA methylation, in particular the regulated, active removal of cytosine methylation, has remained a mystery, partly due to the lack of appropriate model systems to study DNA demethylation. Previous work has largely focused on proliferating cell types that are mitotically arrested using pharmacological inhibitors to distinguish between active and passive mechanisms of DNA demethylation.
Results: We explored this epigenetic phenomenon in a natural setting of post-mitotic cells: the differentiation of human peripheral blood monocytes into macrophages or dendritic cells, which proceeds without cell division. Using a global, comparative CpG methylation profiling approach, we identified many novel examples of active DNA demethylation and characterized accompanying transcriptional and epigenetic events at these sites during monocytic differentiation. We show that active DNA demethylation is not restricted to proximal promoters and that the time-course of demethylation varies for individual CpGs. Irrespective of their location, the removal of methylated cytosines always coincided with the appearance of activating histone marks.
Conclusions: Demethylation events are highly reproducible in monocyte-derived dendritic cells from different individuals. Our data suggest that active DNA demethylation is a precisely targeted event that parallels or follows the modification of histones, but is not necessarily coupled to alterations in transcriptional activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911111 | PMC |
http://dx.doi.org/10.1186/gb-2010-11-6-r63 | DOI Listing |
Int J Biol Macromol
January 2025
College of Agriculture, Guangxi University, Nanning 530004, China. Electronic address:
Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
is a protogynous hermaphroditic fish that changes from female to male, but the underlying sex change mechanism remains as-yet unknown. In this study, we firstly cloned and characterized the sequence and protein structure of of We found that the genomic structure of was different from other species. Expression was detected in the developing gonad by applying qRT-PCR and in situ hybridization.
View Article and Find Full Text PDFBiol Methods Protoc
December 2024
Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sanga Reddy, Kandi, Telangana 502284, India.
Non-haem iron (Fe) and 2-oxoglutarate(2OG)-dependent dioxygenases catalyse various biological reactions. These enzymes couple the oxidative decarboxylation of 2OG to the hydroxylation of the substrates. While some of these enzymes are reported to have multiple substrates, the substrate remains unknown for many of the enzymes.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
Background: Despite promising preclinical studies, the application of DNA methyltransferase inhibitors in treating patients with solid cancers has thus far produced only modest outcomes. The presence of intratumoral heterogeneity in response to DNA methyltransferase inhibitors could significantly influence clinical efficacy, yet our understanding of the single-cell response to these drugs in solid tumors remains very limited.
Methods: In this study, we used cancer/testis antigen genes as a model for methylation-dependent gene expression to examine the activity of DNA methyltransferase inhibitors and their potential synergistic effect with histone deacetylase inhibitors at the single-cancer cell level.
Nat Commun
January 2025
Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!