Background And Aims: Recent studies have shown that dietary red palm oil (RPO) supplementation improves functional recovery following ischaemia/reperfusion in isolated hearts. The main aim of this study was to investigate the effects of dietary RPO supplementation on myocardial infarct size after ischaemia/reperfusion injury. The effects of dietary RPO supplementation on matrix metalloproteinase-2 (MMP2) activation and PKB/Akt phosphorylation were also investigated.
Materials And Methods: Male Wistar rats were divided into three groups and fed a standard rat chow diet (SRC), a SRC supplemented with RPO, or a SRC supplemented with sunflower oil (SFO), for a five week period, respectively. After the feeding period, hearts were excised and perfused on a Langendorff perfusion apparatus. Hearts were subjected to thirty minutes of normothermic global ischaemia and two hours of reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining. Coronary effluent was collected for the first ten minutes of reperfusion in order to measure MMP2 activity by gelatin zymography.
Results: Dietary RPO-supplementation decreased myocardial infarct size significantly when compared to the SRC-group and the SFO-supplemented group (9.1 +/- 1.0% versus 30.2 +/- 3.9% and 27.1 +/- 2.4% respectively). Both dietary RPO- and SFO-supplementation were able to decrease MMP2 activity when compared to the SRC fed group. PKB/Akt phosphorylation (Thr 308) was found to be significantly higher in the dietary RPO supplemented group when compared to the SFO supplemented group at 10 minutes into reperfusion. There was, however, no significant changes observed in ERK phosphorylation.
Conclusions: Dietary RPO-supplementation was found to be more effective than SFO-supplementation in reducing myocardial infarct size after ischaemia/reperfusion injury. Both dietary RPO and SFO were able to reduce MMP2 activity, which suggests that MMP2 activity does not play a major role in protection offered by RPO. PKB/Akt phosphorylation may, however, be involved in RPO mediated protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906443 | PMC |
http://dx.doi.org/10.1186/1476-511X-9-64 | DOI Listing |
Physiol Behav
January 2025
Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address:
Background: Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy.
Objective: To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice.
Redox Biol
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:
Available evidence indicates that neuregulin-1 (NRG-1) can provide a protection against myocardial ischemia/reperfusion (I/R) injury and is involved in various cardioprotective interventions by potential regulation of mitophagy. However, the molecular mechanisms linking NRG-1 and mitophagy remain to be clarified. In this study, both an in vivo myocardial I/R injury model of rats and an in vitro hypoxia/reoxygenation (H/R) model of H9C2 cardiomyocytes were applied to determine whether NRG-1 postconditioning attenuated myocardial I/R injury through the regulation of mitophagy and to explore the underlying mechanisms.
View Article and Find Full Text PDFCurr Opin Hematol
January 2025
Department of Pathology, Section of Oncopathology and Morphological Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
Purpose Of Review: This review aims to summarize the histological differences among thrombi in acute myocardial infarction, ischemic stroke, venous thromboembolism, and amniotic fluid embolism, a newly identified thrombosis.
Recent Findings: Acute coronary thrombi have a small size, are enriched in platelets and fibrin, and show the presence of fibrin and von Willebrand factor, but not collagen, at plaque rupture sites. Symptomatic deep vein thrombi are large and exhibit various phases of time-dependent histological changes.
Life Med
April 2024
Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Mitochondrial transplantation (MT) is a promising therapeutic strategy that involves introducing healthy mitochondria into damaged tissues to restore cellular function. This approach has shown promise in treating cardiac diseases, such as ischemia-reperfusion injury, myocardial infarction, and heart failure, where mitochondrial dysfunction plays a crucial role. Transplanting healthy mitochondria into affected cardiac tissue has resulted in improved cardiac function, reduced infract size, and enhanced cell survival in preclinical studies.
View Article and Find Full Text PDFBackground: The prevalence of coronary chronic total occlusion (CTO) in coronary angiography (CAG) has risen with ageing populations, along with the expansion of CTO percutaneous coronary interventions (CTO-PCI). However, CTO-PCI encounters challenges such as undersized stents, dissection risks, and limited access to intravascular imaging (IVI), particularly in regions with limited health budgets. This study introduces the 'GIVE IT TIME TO SOBER UP - GITSU strategy', a two-session CTO-PCI approach where Thrombolysis in Myocardial Infarction (TIMI-3) antegrade flow is achieved without stent placement in the first session.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!