SUMMARY Transgenic tobacco and Arabidopsis thaliana carrying the Arabidopsis endo-1,4-beta-glucanase (EC 3.2.1.4) Cel1 promoter fused to the beta-glucuronidase (GUS) reporter gene were infected with the root-knot nematode, Meloidogyne incognita, and either the tobacco cyst nematode, Globodera tabacum (tobacco), or beet cyst nematode, Heterodera schachtii (Arabidopsis). Cel1-driven GUS expression was detected in cell elongation zones of noninfected plants and within feeding sites (giant-cells) induced in roots of both plant hosts by M. incognita. The first detectable signs of Cel1 expression within developing giant-cells occurred at the onset of giant-cell formation and continued throughout the M. incognita life cycle. UidA (Gus) transcripts were detectable within giant-cells induced in tobacco roots at 11-13 days postinoculation with M. incognita as determined by in situ mRNA hybridization. By contrast, expression of the Cel1 promoter was not detected within developing syncytia induced in tobacco or Arabidopsis roots by G. tabacum and H. schachtii, respectively, at any time point. The results demonstrate specific regulation of cell wall-degrading enzymes that may be required for cell wall modifications during feeding cell formation by sedentary endoparasitic nematodes. Differential expression of Cel1 by cyst and root-knot nematodes further supports underlying mechanistic differences in giant-cell and syncytium formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1364-3703.2004.00216.x | DOI Listing |
New Phytol
January 2025
Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
The C type of dicotyledonous plants exhibit a higher density of reticulate veins than the C type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.
View Article and Find Full Text PDFPLoS Genet
January 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France.
Gamete killers are genetic loci that distort segregation in the progeny of hybrids because the killer allele promotes the elimination of the gametes that carry the sensitive allele. They are widely distributed in eukaryotes and are important for understanding genome evolution and speciation. We had previously identified a pollen killer in hybrids between two distant natural accessions of Arabidopsis thaliana.
View Article and Find Full Text PDFHeliyon
January 2025
Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable ortholog of SAMHD1, also functions in DSB repair by HR. The loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!