Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

Download full-text PDF

Source
http://dx.doi.org/10.1615/critrevbiomedeng.v37.i6.10DOI Listing

Publication Analysis

Top Keywords

metallic implants
16
physical vapor
12
corrosion processes
8
structure physical
8
vapor deposition
8
corrosion
6
metallic
6
processes physical
4
vapor deposition-coated
4
deposition-coated metallic
4

Similar Publications

Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.

View Article and Find Full Text PDF

Ultrasound Examination for Cement Extrusion After Uni-Compartmental Knee Replacement.

Diagnostics (Basel)

January 2025

Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 10845, Taiwan.

A 66-year-old woman presented with persistent knee effusion three months after undergoing a cemented medial uni-compartmental knee replacement. She was afebrile and able to walk with a stick. Physical examination revealed moderate effusion.

View Article and Find Full Text PDF

Comparison of bioabsorbable screw versus metallic screw fixation for tibial tubercle fractures in adolescents: a retrospective cohort study.

BMC Musculoskelet Disord

January 2025

Department of Orthopedics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.

Background: Displaced tibial tubercle (TT) fractures in adolescents are typically treated with open reduction and internal fixation. While metallic screw (MS) fixation provides strong stability, it often results in a high incidence of postoperative screw head protrusion or irritation, leading to additional removal surgery. Bioabsorbable screw (BS) fixation presents an alternative that may avoid these issues, though its stability has not yet been extensively documented in the literature.

View Article and Find Full Text PDF

The present study aims to analyze the thermal regulation of the Ce/Ce ratio on the nanonetwork titania layer over the titanium (Ti) surface developed by the alkali-mediated surface modification approach. The effect of sequential heat treatment from 200 to 800 °C was evaluated for its surface characteristics such as morphology, phase formation, roughness, hardness, hydrophilicity, etc. Surface oxidation by temperatures up to 600 °C demonstrated a progressive increase in the Ce (CeO) content with a rutile TiO network layer over the Ti surface.

View Article and Find Full Text PDF

Biofunctionalisation of porous additively manufactured magnesium-based alloys for Orthopaedic applications: A review.

Biomater Adv

January 2025

School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom; Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland. Electronic address:

Magnesium (Mg) alloys have gained significant attention as a desirable choice of biodegradable implant for use in bone repair applications, largely owing to their unique material properties. More recently, Mg and Mg-based alloys have been used as load-bearing metallic scaffolds for bone tissue engineering applications, offering promising opportunities in the field. The mechanical properties and relative density of Mg-based alloys closely approximate those of natural human bone tissue, thereby mitigating the risk of stress-shielding effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!