Intramuscular fat, the total lipid deposited within skeletal muscle, has been regarded as a potential factor responsible for meat quality in animal production and insulin resistance in humans. The objective of present study was to identify candidate genes which control intramuscular fat accumulation through using animal models. PIC pigs (lean-type) and Rongchang pigs (obese-type) were used. By scanning the mRNA samples of longissimus dorsi muscle with Affymetrix Gene-Chip microarray technology, sus scrofa chloride intracellular channel 5 (CLIC5) was isolated, and its mRNA abundance and protein expression level were reversely related with the intramuscular fat content of pigs. Furthermore, over-expression of CLIC5 dramatically increased the proliferation of 3T3-L1 preadipocytes, while inhibited adipocytic differentiation accompanied by the down-regulation of c/EBPalpha, LPL, and PPARgamma protein. Our results suggest that CLIC5 might be a crucial regulator of adipose accumulation in skeletal muscle of pigs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.22615 | DOI Listing |
Burns Trauma
January 2025
Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.
Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
School of Physical Education, Department of Sports Health, Central China Normal University, Wuhan, 430079, China.
Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).
Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.
Diabetol Int
January 2025
Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan.
This study aimed to the investigate prevalence and factors associated with reduced skeletal muscle mass in non-elderly adults with type 1 diabetes (T1D). Ninety-nine patients (65 women, mean age: 43 ± 11 years, range 20-65 years) with acute-onset T1D who underwent body component analysis between October 2016 and April 2018 were studied. Bioelectrical impedance analysis was used to calculate the skeletal muscle mass index (SMI) of the limbs.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
Periparturient dairy cows experience metabolic adaptations to prepare for increased nutrient requirements of the fetus and the onset of lactation. Adaptations include increased peripheral tissue insulin resistance, which can be evaluated experimentally using intravenous glucose tolerance tests (IVGTT). The objective of this study was to determine if prepartum skeletal muscle reserves and supplementation of branched-chain volatile fatty acids (BCVFA) in the prepartum period affected blood glucose, β-hydroxybutyrate (BHB), and insulin concentrations 2 wk prepartum and 1 wk postpartum utilizing an IVGTT.
View Article and Find Full Text PDFJDS Commun
January 2025
School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061.
Prolonged exposure to high environmental temperatures results in an accumulated heat load that induces a heat stress (HS) response in dairy cattle. Heat stress compromises dairy farm profitability by reducing milk yield, altering milk composition, and hindering reproductive performance. The ability to alternate between carbohydrate and lipid sources for energy production is termed metabolic flexibility (Met Flex).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!