Bone resorption requires the adhesion of osteoclasts to extracellular matrix (ECM) components, a process mediated by the alpha(v)beta(3) integrin. Following engagement with the ECM, integrin receptors signal via multiple downstream effectors, including the integrin-linked kinase (ILK). In order to characterize the physiological role of ILK in bone resorption, we generated mice with an osteoclast-specific Ilk gene ablation by mating mice with a floxed Ilk allele with TRAP-Cre transgenic mice. The TRAP-Cre mice specifically excised floxed alleles in osteoclasts, as revealed by crossing them with the ROSA26R reporter strain. Osteoclast-specific Ilk mutant mice appeared phenotypically normal, but histomorphometric analysis of the proximal tibia revealed an increase in bone volume and trabecular thickness. Osteoclast-specific Ilk ablation was associated with an increase in osteoclastogenesis both in vitro and in vivo. However, the mutant osteoclasts displayed a decrease in resorption activity as assessed by reduced pit formation on dentin slices in vitro and decreased serum concentrations of the C-terminal telopeptide of collagen in vivo. Interestingly, compound heterozygous mice in which one allele of Ilk and one allele of the beta(3) integrin gene were inactivated (ILK(+/-); beta(3) (+/-)) also had increased trabecular thickness, confirming that beta(3) integrin and Ilk form part of the same genetic cascade. Our results show that ILK is important for the function, but not the differentiation, of osteoclasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995416PMC
http://dx.doi.org/10.1002/jcb.22609DOI Listing

Publication Analysis

Top Keywords

bone resorption
12
osteoclast-specific ilk
12
ilk
10
integrin-linked kinase
8
kinase ilk
8
ilk allele
8
trabecular thickness
8
beta3 integrin
8
mice
6
osteoclast-specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!