Transport can be a stressful experience for pigs, especially in pigs simultaneously experiencing weaning stress. The objective of this study was to use a multidisciplinary approach to assess the welfare of weaned pigs during transport at 3 space allowances. A commercial semitrailer, fitted with compartments, provided 0.05, 0.06, and 0.07 m(2)/pig. The study recorded frequency of standing, lying, sitting, and standing-rearing on another pig during the entire duration of transport. Blood samples, body weights, and lesion scores were collected from a subset of pigs (n = 48 per space allowance) in each experimental compartment. Transport time for the pigs was 148.0 +/- 10.0 min to the wean-to-finishing site. Total white blood cell counts, cortisol, and several blood chemistry values increased (p < .05) after transport regardless of space allowance. Glucose and body weight decreased (p < .05) after transport regardless of space allowance. Space allowance influenced stand-rearing, sitting, standing, and lying behaviors in pigs. Combining behavioral and physiological measures of stress provides a robust picture of piglet welfare during transport at different space allowances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10888705.2010.483879 | DOI Listing |
J Insect Physiol
January 2025
Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil. Electronic address:
Lutzomyia longipalpis Lutz & Neiva, 1912 (Diptera, Psychodidae), is the primary vector of Leishmania infantum Nicole, 1908, the etiological agent of American visceral leishmaniasis. During their development, sandfly larvae pass through four instars, consuming soil particles enriched with microorganisms and decomposing organic material. In numerous insect species, the intestinal epithelium not only secretes digestive enzymes and absorbs digested nutrients but also carries out additional functions, such as regulating luminal pH and facilitating the absorption or secretion of ions and water.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.
View Article and Find Full Text PDFRev Bras Enferm
January 2025
Universidade Regional do Cariri. Crato, Ceará, Brazil.
Objective: to identify knowledge production about nurses' contributions to improving healthy and sustainable public spaces.
Methods: an integrative review carried out in February 2023 in electronic databases. Studies that answered the research question and that were available in full, in Portuguese, English and Spanish, were included.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi'an 710071, PR China.
Commercial SnO nanocrystals used for producing electron transporting layers (ETLs) of perovskite solar cells (PSC) are prone to aggregation at room temperature and contain many structural defects. Herein, we report that the LiOH additive can simultaneously delay the aggregation and donate the beneficial aging effect to SnO nanocrystals. The resulting SnO ETLs show the desired characteristics, including a broadened absorption range, reduced defects, improved transporting properties, and decreased work function.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
An effective long-term nitrogen dioxide (NO) monitoring at trace concentration is critical for protecting the ecological environment and public health. Tellurium (Te), as a recently discovered 2D elemental material, is promising for NO detection because of its suitable band structure for gas adsorption and charge mobility. However, the high activity of Te leads to poor stability in ambient and harsh conditions, limiting its application as a gas-sensitive material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!