The biological function of a cell-type-specific glycosylation of an adhesion molecule belonging to the L1CAM immunoglobulin superfamily was previously determined in the nervous system of the embryonic leech, Hirudo medicinalis. The Lan3-2 glycoepitope is a surface marker of sensory afferent neurons and is required for their appropriate developmental collateral branching and synaptogenesis in the CNS. The chemical structure of the Lan3-2 glycoepitope consists of beta-(1,4)-linked mannopyranose. Here, we show the conservation of the cell-type-specific expression of this mannose polymer in Caenorhabditis elegans. The Lan3-2 glycoepitope is expressed on the cell surface of a subset of dissociated embryonic neurons and, in the adult worm, by the pharyngeal motor neuron, M5, and the chemosensory afferents, the amphids. Additionally, the vulval epithelium expresses the Lan3-2 glycoepitope in late L4 larvae and in adult hermaphrodites. To investigate proteins carrying this restrictively expressed glycoepitope, worm extract was immunoaffinity purified with Lan3-2 monoclonal antibody and Western blotted. A polyclonal antibody reactive with the cytoplasmic tail of LAD-1/SAX-7, a C. elegans member of the L1CAM family, recognizes a 270 kDa protein band while Lan3-2 antibody also recognizes a 190 kDa glycoform, its putative Lan3-2 ectodomain. Thus, in C. elegans, as in leech, the Lan3-2 epitope is located on a L1CAM homologue. The cell-type-specific expression of the Lan3-2 glycoepitope shared by leech and C. elegans will be useful for understanding how cell-type-specific glycoepitopes mediate cell-cell interactions during development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00427-010-0330-8 | DOI Listing |
Dev Genes Evol
September 2010
Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
The biological function of a cell-type-specific glycosylation of an adhesion molecule belonging to the L1CAM immunoglobulin superfamily was previously determined in the nervous system of the embryonic leech, Hirudo medicinalis. The Lan3-2 glycoepitope is a surface marker of sensory afferent neurons and is required for their appropriate developmental collateral branching and synaptogenesis in the CNS. The chemical structure of the Lan3-2 glycoepitope consists of beta-(1,4)-linked mannopyranose.
View Article and Find Full Text PDFJ Neurochem
December 2008
Department of Physiology, Michigan State University, East Lansing, Michigan, USA.
While glycosyltransferases are restrictively expressed in invertebrate model organisms, little is known of their glycan end products. One such restrictively expressed glycoepitope was localized to sensory and epithelial cells of leech and Caenorhabditis elegans using the Lan3-2 monoclonal antibody. A biological function for the neural Lan3-2 epitope was previously determined in the leech.
View Article and Find Full Text PDFBiochim Biophys Acta
June 2000
Department of Zoology and Genetics, Iowa State University, AMes 50011, USA.
Tractin is a novel member of the Ig-superfamily which has a highly unusual structure. It contains six Ig domains, four FNIII-like domains, an acidic domain, 12 repeats of a novel proline- and glycine-rich motif with sequence similarity to collagen, a transmembrane domain, and an intracellular tail with an ankyrin and a PDZ domain binding motif. By generating domain-specific antibodies, we show that Tractin is proteolytically processed at two cleavage sites, one located in the third FNIII domain, and a second located just proximal to the transmembrane domain resulting in the formation of four fragments.
View Article and Find Full Text PDFJ Cell Biol
July 1997
Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA.
By immunoaffinity purification with the mAb Lan3-2, we have identified two novel Ig superfamily members, Tractin and LeechCAM. LeechCAM is an NCAM/FasII/ApCAM homologue, whereas Tractin is a cleaved protein with several unique features that include a PG/YG repeat domain that may be part of or interact with the extracellular matrix. Tractin and LeechCAM are widely expressed neural proteins that are differentially glycosylated in sets and subsets of peripheral sensory neurons that form specific fascicles in the central nervous system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!