The hypoxia and proliferation index increase with grade in human glial tumors, but there is no agreement whether either has prognostic importance in glioblastomas. We evaluated these end points individually and together in 16 de novo human glioblastomas using antibodies against the 2-nitroimidazole hypoxia detection agent EF5 and the proliferation detection agent Ki-67. Frozen tumor tissue sections were fluorescence-stained for nuclei (Hoechst 33342), hypoxia (anti-EF5 antibodies), and proliferation (anti-Ki-67 antibodies). EF5 binding adjacent to Ki-67+ cells, overall EF5 binding, the ratio of these values, and the proliferation index were evaluated. Patients were classified using recursive partitioning analysis and followed up until recurrence and/or death. Recursive partitioning analysis was statistically significant for survival (P = .0026). Overall EF5 binding, EF5 binding near Ki-67+ cells, and proliferation index did not predict recurrence. Two additional survival analyses based on ratios of the overall EF5 binding to EF5 binding near Ki-67+ cells were performed. High and low ratio values were determined by two cutoff points: (a) the 50% value for the ratio [EF5/Ki-67(Binding)]/[Tumor(binding)] = Ratio(EF5 50%) and (b) the median EF5 value (75.6%) of the ratio [EF5/Ki-67(Binding)]/[Tumor(binding)] = Ratio(patients median). On the basis of the Ratio(EF5 50%), recurrence (P = .0074) and survival (P = .0196) could be predicted. Using the Ratio(patients median), only survival could be predicted (P = .0291). In summary, patients had a worse prognosis if the [EF5/Ki-67(Binding)]/[Tumor(binding)] ratio was high. A hypothesis for the mechanisms and translational significance of these findings is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887645PMC
http://dx.doi.org/10.1593/tlo.09265DOI Listing

Publication Analysis

Top Keywords

ef5 binding
24
ki-67+ cells
12
hypoxia proliferation
8
detection agent
8
ef5
8
ratio values
8
recursive partitioning
8
partitioning analysis
8
binding ef5
8
binding ki-67+
8

Similar Publications

Background: Endometriosis, due to its ambiguous symptoms, still remains one of the most difficult female diseases to treat, with an average diagnosis time of 7-9 years. The changing level of hypoxia plays an important role in a healthy endometrium during menstruation and an elevated expression of the hypoxia-inducible factor 1-alpha (HIF-1α) has been demonstrated in ectopic endometria. HIF-1α mediates the induction of proangiogenic factors and the development of angiogenesis is a critical step in the establishment and pathogenesis of endometriosis.

View Article and Find Full Text PDF

Soluble resistance-related calcium-binding protein or Sorcin is an allosteric, calcium-binding Penta-EF hand (PEF) family protein implicated in multi-drug resistant cancers. Sorcin is known to bind chemotherapeutic molecules such as Doxorubicin. This study uses molecular dynamics simulations to explore the dynamics and allosteric behavior of Sorcin in the context of Ca uptake and Doxorubicin binding.

View Article and Find Full Text PDF

Consensus scoring evaluated using the GPCR-Bench dataset: Reconsidering the role of MM/GBSA.

J Comput Aided Mol Des

June 2022

Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.

The recent availability of large numbers of GPCR crystal structures has provided an unprecedented opportunity to evaluate their performance in virtual screening protocols using established benchmarking datasets. In this study, we evaluated the ability of MM/GBSA in consensus scoring-based virtual screening enrichment together with nine classical scoring functions, using the GPCR-Bench dataset consisting of 24 GPCR crystal structures and 254,646 actives and decoys. While the performance of consensus scoring was modest overall, combinations which included MM/GBSA performed relatively well compared to combinations of classical scoring functions.

View Article and Find Full Text PDF

Sorcin (SOluble Resistance-related Calcium bInding proteiN) is a calcium binding protein that plays a key role in multidrug resistance (MDR) in human cancers. This study aimed at understanding the binding mechanism and structural basis for the interaction of structurally and functionally unrelated chemotherapeutic agent, namely doxorubicin, etoposide, omacetaxine mepesuccinate and paclitaxel with Sorcin by utilizing docking and molecular dynamic simulation approaches. The docking evaluation of etoposide, omacetaxine mepesuccinate and paclitaxel have shown a high affinity binding with Sorcin at the Ca-binding C-terminal domain (SCBD) in a comparable mode and affinity of binding to doxorubicin.

View Article and Find Full Text PDF

Benchmarking the performance of MM/PBSA in virtual screening enrichment using the GPCR-Bench dataset.

J Comput Aided Mol Des

November 2020

Center for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.

Recent breakthroughs in G protein-coupled receptor (GPCR) crystallography and the subsequent increase in number of solved GPCR structures has allowed for the unprecedented opportunity to utilize their experimental structures for structure-based drug discovery applications. As virtual screening represents one of the primary computational methods used for the discovery of novel leads, the GPCR-Bench dataset was created to facilitate comparison among various virtual screening protocols. In this study, we have benchmarked the performance of Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) in improving virtual screening enrichment in comparison to docking with Glide, using the entire GPCR-Bench dataset of 24 GPCR targets and 254,646 actives and decoys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!