When the GaAs substrate of a 5-microm Al(x)Ga(1-x) film is removed by chemical etching, oscillations in the film-layerformed Fabry-Perot cavity are observed in the low temperature photoluminescence spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.29.002367 | DOI Listing |
Sensors (Basel)
January 2025
Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
The design of optical sensors aims at providing, among other things, the highest precision in the determination of the target measurand. Many sensor systems rely on a spectral transducer to map changes in the measurand into spectral shifts of a resonance peak in the reflection or transmission spectrum, which is measured by a readout device (e.g.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China.
Over the past decade, semiconducting halide perovskite lasers have emerged as a transformative platform in optoelectronics, owing to unique properties such as high photoluminescence quantum yields, tunable bandgaps, and low-cost fabrication processes. This review systematically examines the advancements in halide perovskite lasers, covering diverse laser architectures, such as whispering gallery mode, Fabry-Pérot, plasmonic, bound states in the continuum (BIC), quantum dot, and polariton lasers. The mechanisms of optical gain, the role of material engineering in optimizing lasing performance, and the challenges associated with continuous-wave (CW) pumping and electrically driven lasing are discussed.
View Article and Find Full Text PDFNano Lett
January 2025
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.
Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.
View Article and Find Full Text PDFAn ultrasensitive refractive index (RI) sensing technology based on an enhanced Vernier effect is proposed, which integrates a polymer Fabry-Perot interferometer (FPI) with an open cavity FPI on the tip of a seven-core optical fiber. Interference spectra of the polymer FPI and the open cavity FPI shift to opposite directions as the ambient RI changes, thus leading to the enhanced Vernier effect. Investigations of RI sensitivity and temperature dependence of the proposed fiber sensors are carried out.
View Article and Find Full Text PDFFabry-Perot (FP) lasers with a cavity length shorten down to 50 µm were investigated. One or two laser mirrors were formed by focused ion beam etching. InGaAs quantum dots of high density were used as the laser active region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!