Previously, we proposed a new model for understanding the Warburg effect in tumorigenesis and metastasis. In this model, the stromal fibroblasts would undergo aerobic glycolysis (a.k.a., the Warburg effect)--producing and secreting increased pyruvate/lactate that could then be used by adjacent epithelial cancer cells as "fuel" for the mitochondrial TCA cycle, oxidative phosphorylation, and ATP production. To test this model more directly, here we used a matched set of metabolically well-characterized immortalized fibroblasts that differ in a single gene. CL3 fibroblasts show a shift towards oxidative metabolism, and have an increased mitochondrial mass. In contrast, CL4 fibroblasts show a shift towards aerobic glycolysis, and have a reduced mitochondrial mass. We validated these differences in CL3 and CL4 fibroblasts by performing an unbiased proteomics analysis, showing the functional upregulation of 4 glycolytic enzymes, namely ENO1, ALDOA, LDHA and TPI1, in CL4 fibroblasts. Many of the proteins that were upregulated in CL4 fibroblasts, as seen by unbiased proteomics, were also transcriptionally upregulated in the stroma of human breast cancers, especially in the patients that were prone to metastasis. Importantly, when CL4 fibroblasts were co-injected with human breast cancer cells (MDA-MB-231) in a xenograft model, tumor growth was dramatically enhanced. CL4 fibroblasts induced a > 4-fold increase in tumor mass, and a near 8-fold increase in tumor volume, without any measurable increases in tumor angiogenesis. In parallel, CL3 and CL4 fibroblasts both failed to form tumors when they were injected alone, without epithelial cancer cells. Mechanistically, under co-culture conditions, CL4 glycolytic fibroblasts increased mitochondrial activity in adjacent breast cancer cells (relative to CL3 cells), consistent with the "Reverse Warburg Effect". Notably, Western blot analysis of CL4 fibroblasts revealed a significant reduction in caveolin-1 (Cav-1) protein levels. In human breast cancer patients, a loss of stromal Cav-1 is associated with an increased risk of early tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. Thus, loss of stromal Cav-1 may be an effective marker for predicting the "Reverse Warburg Effect" in the stroma of human breast cancer patients. As such, CL4 fibroblasts are a new attractive model for mimicking the "glycolytic phenotype" of cancer-associated fibroblasts. Nutrients derived from glycolytic cancer associated fibroblasts could provide an escape mechanism to confer drug-resistance during anti-angiogenic therapy, by effectively reducing the dependence of cancer cells on a vascular blood supply.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.9.12.11989DOI Listing

Publication Analysis

Top Keywords

cl4 fibroblasts
36
breast cancer
20
cancer cells
20
fibroblasts
16
human breast
16
cl4
10
cancer
9
glycolytic cancer
8
cancer associated
8
associated fibroblasts
8

Similar Publications

Background: Diabetes mellitus (DM) can cause severe complications, including diabetic foot ulcers (DFU). There is a significant gap in understanding the single-cell ecological atlas of DM and DFU tissues.

Methods: Single-cell RNA sequencing data were used to create a detailed single-cell ecological landscape of DM and DFU.

View Article and Find Full Text PDF

Aptamer-mediated impairment of EGFR-integrin αvβ3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers.

Sci Rep

April 2017

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore" (IEOS), Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Naples, Italy.

Current treatment options for triple-negative breast cancers (TNBCs) is limited by the absence of well-defined biomarkers, excluding a targeted therapy. Notably, epidermal growth factor receptor (EGFR) is overexpressed in a great proportion of TNBCs and is a negative prognostic factor. In clinical trials, however, existing EGFR inhibitors showed disappointing outcome.

View Article and Find Full Text PDF

A range of new helicate-like architectures have been prepared highly diastereoselective self-assembly using readily accessible starting materials. Six pairs of enantiomers [FeL]Cl·HO (L = various bidentate ditopic ligands NN-NN) show very good water solubility and stability. Their activity against a range of cancer cell lines is structure-dependent and gives IC values as low as 40 nM.

View Article and Find Full Text PDF

The aim of the present study was to examine the impact of a four platinum complexes of formula [Pt2L4(berenil)2]Cl4 where L is 3-ethylpyridine (Pt10), 3-(n-butyl)pyridine (Pt11), 4- ethylpyridine (Pt12) and 4-(t-butyl)pyridine (Pt13) on viability of Ishikawa endometrial cancer cells using the MTT assay and inhibition of [3H]thymidine incorporation into DNA. Our results confirm that compounds Pt10-Pt13 are more potent antiproliferative agents than cisplatin in endometrial cancer cells. Moreover, it was shown that all examined compounds Pt10-Pt13 inhibit collagen biosynthesis in neoplastic cells stronger than cisplatin.

View Article and Find Full Text PDF

Autosomal dominant cutis laxa (ADCL) is characterized by a typical facial appearance and generalized loose skin folds, occasionally associated with aortic root dilatation and emphysema. We sequenced exons 28-34 of the ELN gene in five probands with ADCL features and found five de novo heterozygous mutations: c.2296_2299dupGCAG (CL-1), c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!