Direct imprinting of high resolution TiO(2) nanostructures.

Nanotechnology

Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 117602, Republic of Singapore.

Published: July 2010

We demonstrate a different approach to direct nanoimprint lithography of oxides, in particular TiO(2), using the metal methacrylate route which not only gives very high resolution ( approximately 20 nm) but also provides yields of approximately 100% over areas > 1 cm x 1 cm. TiO(2) was imprinted using a polymerizable liquid 'TiO(2) resin' consisting of a mixture of titanium methacrylate, ethylene glycol dimethacrylate, and azobis-(isobutyronitrile). The resin underwent free radical polymerization when imprinted using a silicon mold at 110 degrees C with pressures as low as 10 bar. Polymerization strengthens the imprinted structures, thereby giving approximately 100% yield after demolding. Heat-treatment of the imprinted structures at 400 degrees C resulted in the loss of organics and their subsequent shrinkage ( approximately 75%) without the loss of integrity or aspect ratio, and converted them to TiO(2) nanostructures as small as approximately 20 nm wide. Furthermore, our method demonstrates that large imprinted areas of sub-100-nm features can be achieved by sub-micron molds which translate into huge cost savings with the added flexibility of direct patterning of urinary as well as multi-component oxides.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/28/285303DOI Listing

Publication Analysis

Top Keywords

high resolution
8
tio2 nanostructures
8
imprinted structures
8
imprinted
5
direct imprinting
4
imprinting high
4
tio2
4
resolution tio2
4
nanostructures demonstrate
4
demonstrate approach
4

Similar Publications

Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Preventing the progression of cirrhosis to decompensation and death.

Nat Rev Gastroenterol Hepatol

January 2025

Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.

Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur.

View Article and Find Full Text PDF

Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity.

View Article and Find Full Text PDF

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!