Technical note: High fidelity of whole-genome amplified sheep (Ovis aries) deoxyribonucleic acid using a high-density single nucleotide polymorphism array-based genotyping platform.

J Anim Sci

Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.

Published: October 2010

Advances in high-throughput genotyping technologies have afforded researchers the opportunity to study ever-increasing numbers of SNP in animal genomes. However, many studies encounter difficulties in obtaining sufficient quantities of high-quality DNA for such analyses, particularly when the source biological material is limited or degraded. The recent development of in vitro whole-genome amplification approaches has permitted researchers to circumvent these challenges by increasing the amount of usable DNA in normally small-quantity samples. Here, we assess the performance of whole-genome amplification products generated from ovine genomic DNA using a high-throughput SNP genotyping platform, the newly developed Illumina ovineSNP50 BeadChip. Our results demonstrate a high genotype call rate for conventional genomic DNA and whole-genome amplified genomic DNA. The data also reveal an exceptionally high concordance rate ( > or = 99%) between the genotypes generated from whole-genome amplified products and their conventional genomic DNA counterparts. This study supports the use of whole-genome amplification as a viable solution for the analysis of high-density SNP genotypic data using compromised or limited starting material.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2009-2723DOI Listing

Publication Analysis

Top Keywords

genomic dna
16
whole-genome amplified
12
whole-genome amplification
12
genotyping platform
8
conventional genomic
8
whole-genome
6
dna
6
technical note
4
note high
4
high fidelity
4

Similar Publications

The novel allele HLA-DQA1*02:39 differs from HLA-DQA1*02:01:01:01 by one non-synonymous nucleotide substitution in exon 2.

View Article and Find Full Text PDF

Description of the novel HLA-DQA1*05:118 and -DQB1*03:01:01:73 alleles.

View Article and Find Full Text PDF

The novel HLA-DQB1*06:469 allele differs from HLA-DQB1*06:01:01:01 by one nucleotide substitution in codon 187 in exon 3.

View Article and Find Full Text PDF

The novel HLA-DRB1*07:159 allele differs from HLA-DRB1*07:01:01:01 by one non-synonymous nucleotide substitution in exon 2.

View Article and Find Full Text PDF

Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!