Aims: Irradiation-induced damage to pulmonary endothelial cells is thought to be an important mediator of the pathogenesis of radiation pneumonopathy. Tetrahydropalmatine (THP) has been shown to have a protective effect against oxidative stress. This study was designed to investigate the potential radioprotective effect of THP against irradiation-induced endothelial cellular damage and to elucidate the underlying mechanisms.
Main Methods: Human EA.hy926 cells were treated with THP and irradiation. Cell viability was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For the detection of apoptosis, morphological observation, flow cytometry and a caspase-3 activity assay were employed. The expression of cytochrome-c and Bax/Bcl-2 protein were detected by western blot analysis. Generation of reactive oxygen species (ROS) was measured by flow cytometry. Malondialdehyde (MDA), lactate dehydrogenase (LDH), glutathione (GSH) and superoxide dismutase (SOD) were measured to assess cellular oxidative stress induced injury.
Key Findings: Preincubation of EA.hy926 cells with THP before gamma-radiation resulted in significant inhibition of apoptosis and enhancement of cell viability, as revealed by morphological observation, flow cytometry and MTT assay. THP significantly reduced intracellular ROS formation, levels of intracellular MDA and LDH, and enhanced the production of intracellular antioxidants (GSH and SOD) in EA.hy926 cells. Meanwhile, THP also inhibited the decrease of intracellular mitochondrial membrane potential (psim), caspase-3 activation, cytochrome-c release and reduced Bax/Bcl-2 ratio in THP pretreated, irradiated cells.
Significance: Our findings demonstrated THP could effectively protect endothelial cells against gamma-irradiation injury, which could potentially be applied to the prevention of endothelial cell dysfunctions associated with ionizing irradiation-induced lung injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2010.05.011 | DOI Listing |
Hepatol Commun
November 2024
Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.
Background: HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors.
Methods: A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells.
FASEB J
January 2025
Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Retinal pathological angiogenesis (PA) is a common hallmark in proliferative retinopathies, including age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and retinopathy of prematurity (ROP). The mechanisms underlying PA is complex and incompletely understood. In this study, we investigated the role of extracellular matrix (ECM) protein biglycan (BGN) in PA using an oxygen-induced retinopathy (OIR) mouse model, along with hypoxia (1% O) conditions for incubating pericytes and endothelial cells in vitro.
View Article and Find Full Text PDFBioact Mater
April 2025
School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.
View Article and Find Full Text PDFAlzheimers Dement (N Y)
January 2025
Department of Medicine Weill Cornell Medicine-Qatar, Qatar Foundation Doha Qatar.
Introduction: Corneal confocal microscopy (CCM) detects neurodegeneration in mild cognitive impairment (MCI) and dementia and identifies subjects with MCI who develop dementia. This study assessed whether abnormalities in corneal endothelial cell (CEC) morphology are related to corneal nerve morphology, brain volumetry, cerebral ischemia, and cognitive impairment in MCI and dementia.
Methods: Participants with no cognitive impairment (NCI), MCI, and dementia underwent CCM to quantify corneal endothelial cell density (CECD) and area (CECA), corneal nerve fiber morphology, magnetic resonance imaging (MRI) brain volumetry, and severity of brain ischemia.
Int J Gen Med
December 2024
Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People's Republic of China.
Purpose: To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.
Methods: The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!