In this paper we analyse the impact of protein-, lipid- and receptor-binding on receptor occupancy in a two-compartment system, with proteins in both compartments and lipids and receptors in the peripheral compartment only. We do this for two manners of drug administration: a bolus administration and a constant rate infusion, both into the central compartment. We derive explicit approximations for the time-curves of the different compounds valid for a wide range of realistic values of rate constants and initial concentrations of proteins, lipids, receptors and the drug. These approximations are used to obtain both qualitative and quantitative insight into such critical properties as the distribution of the drug over the two compartments, the maximum receptor occupancy and the area under the drug-receptor complex curve. In particular we focus on assessing the impact of the dissociation constants, K(P), K(L) and K(R) of the drug with, respectively, the proteins, the lipids and the receptors, the permeability and the surface area of the membrane between compartments, and the rate the drug is eliminated from the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2010.05.035 | DOI Listing |
Clin Cancer Res
January 2025
Institute of Cancer Research, Sutton, Sutton, United Kingdom.
Purpose: Innate immune cell-based therapies have shown promising antitumor activity against solid and hematologic malignancies. AFM24, a bispecific innate cell engager, binds CD16A on natural killer (NK) cells/macrophages and EGFR on tumor cells, redirecting antitumor activity towards tumors. The safety and tolerability of AFM24 was evaluated in this Phase 1/2a dose escalation/dose expansion study in patients with recurrent or persistent, advanced solid tumors known to express EGFR.
View Article and Find Full Text PDFJ Neurosci
January 2025
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.
Dynamic reconfigurations of the functional connectome across different connectivity states are highly heritable, predictive of cognitive abilities, and linked to mental health. Despite their established heritability, the specific polymorphisms that shape connectome dynamics are largely unknown. Given the widespread regulatory impact of modulatory neurotransmitters on functional connectivity, we comprehensively investigated a large set of single nucleotide polymorphisms (SNPs) of their receptors, metabolic enzymes, and transporters in 674 healthy adult subjects (347 females) from the Human Connectome Project.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:
Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.
Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:
ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!