Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2926295 | PMC |
http://dx.doi.org/10.1016/j.nbd.2010.05.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!