A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An automated ECG-artifact removal method for trunk muscle surface EMG recordings. | LitMetric

An automated ECG-artifact removal method for trunk muscle surface EMG recordings.

Med Eng Phys

Department of Orthopaedics and Traumatology, The University of Hong Kong, 12 Sandy Bay Road, Pokfulam, Hong Kong.

Published: October 2010

This study aimed at developing a method for automated electrocardiography (ECG) artifact detection and removal from trunk electromyography signals. Independent Component Analysis (ICA) method was applied to the simulated data set of ECG-corrupted surface electromyography (SEMG) signals. Independent Components (ICs) correspond to ECG artifact were then identified by an automated detection algorithm and subsequently removed. The detection performance of the algorithm was compared to that by visual inspection, while the artifact elimination performance was compared with Butterworth high pass filter at 30 Hz cutoff (BW HPF 30). The automated ECG-artifact detection algorithm successfully recognized the ECG source components in all data sets with a sensitivity of 100% and specificity of 99%. Better performance indicated by a significantly higher correlation coefficient (p<0.001) with the original EMG recordings was found in the SEMG data cleaned by the ICA-based method, than that by BW HPF 30. The automated ECG-artifact removal method for trunk SEMG recordings proposed in this study was demonstrated to produce a very good detection rate and preserved essential EMG components while keeping its distortion to minimum. The automatic nature of our method has solved the problem of visual inspection by standard ICA methods and brings great clinical benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2010.05.007DOI Listing

Publication Analysis

Top Keywords

automated ecg-artifact
8
ecg artifact
8
signals independent
8
detection algorithm
8
automated
4
ecg-artifact removal
4
removal method
4
method trunk
4
trunk muscle
4
muscle surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!