Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There are a number of cancer and toxicity studies that have been carried out to assess hazard from methyl tertiary-butyl ether (MTBE) exposure via inhalation and oral administration. MTBE has been detected in surface as well as ground water supplies which emphasized the need to assess the risk from exposure via drinking water contamination. This model can now be used to evaluate route-to-route extrapolation issues concerning MTBE exposures but also as a means of comparing potential dose metrics that may provide insight to differences in biological responses observed in rats following different routes of MTBE exposure. Recently an updated rat physiologically based pharmacokinetic (PBPK) model was published that relied on a description of MTBE and its metabolite tertiary-butyl alcohol (TBA) binding to alpha 2u-globulin, a male rat-specific protein. This model was used to predict concentrations of MTBE and TBA in the kidney, a target tissue in the male rat. The objective of this study was to use this model to evaluate the dosimetry of MTBE and TBA in rats following different exposure scenarios, used to evaluate the toxicity and carcinogenicity of MTBE, and compare various dose metrics under these different conditions. Model simulations suggested that although inhalation and drinking water exposures show a similar pattern of MTBE and TBA exposure in the blood and kidney (i.e. concentration-time profiles), the total blood and kidney levels following exposure of MTBE to 7.5mg/ml MTBE in the drinking water for 90 days is in the same range as administration of an oral dose of 1000 mg/kg MTBE. Evaluation of the dose metrics also supports that a high oral bolus dose (i.e. 1000 mg/kg MTBE) results in a greater percentage of the dose exhaled as MTBE with a lower percent metabolized to TBA as compared to dose of MTBE that is delivered over a longer period of time as in the case of drinking water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2010.06.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!