Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant germplasm and difficulty in transforming hexaploid wheat. Virus-induced gene silencing (VIGS) technology is emerging as a viable reverse genetics approach in cereal crops. However, the potential of VIGS for determining aphid defence gene function in wheat has not been evaluated. We report on the use of recombinant barley stripe mosaic virus (BSMV) to target and silence a WRKY53 transcription factor and an inducible phenylalanine ammonia-lyase (PAL) gene, both predicted to contribute to aphid defence in a genetically resistant wheat line. After inoculating resistant wheat with the VIGS constructs, transcript abundance was reduced to levels similar to that observed in susceptible wheat. Notably, the level of PAL expression was also suppressed by the WKRY53 construct, suggesting that these genes operate in the same defence response network. Both knockdowns exhibited a susceptible phenotype upon aphid infestation, and aphids feeding on silenced plants exhibited a significant increase in fitness compared to aphids feeding on control plants. Altered plant phenotype and changes in aphid behaviour after silencing imply that WKRY53 and PAL play key roles in generating a successful resistance response. This study is the first report on the successful use of VIGS to investigate genes involved in wheat-insect interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1467-7652.2010.00539.xDOI Listing

Publication Analysis

Top Keywords

virus-induced gene
8
gene silencing
8
inducible phenylalanine
8
phenylalanine ammonia-lyase
8
wheat
8
aphid resistance
8
resistance response
8
aphid defence
8
resistant wheat
8
aphids feeding
8

Similar Publications

Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a gene involved in chlorophyll synthesis in the BMYV genome.

View Article and Find Full Text PDF

Horse Innate Immunity in the Control of Equine Infectious Anemia Virus Infection: A Preliminary Study.

Viruses

November 2024

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy.

The mechanisms of the innate immunity control of equine infectious anemia virus in horses are not yet widely described. Equine monocytes isolated from the peripheral blood of three Equine infectious anemia (EIA) seronegative horses were differentiated in vitro into macrophages that gave rise to mixed cell populations morphologically referable to M1 and M2 phenotypes. The addition of two equine recombinant cytokines and two EIA virus reference strains, Miami and Wyoming, induced a more specific cell differentiation, and as for other species, IFNγ and IL4 stimulation polarized horse macrophages respectively towards the M1 and the M2 phenotypes.

View Article and Find Full Text PDF

Mulberry ( L.) is a significant economic tree species in China. The lignin component serves as a critical limiting factor that impacts both the forage quality and the conversion efficiency of mulberry biomass into biofuel.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals Key Pathways and Genes Involved in Lodging Resistance of Upland Cotton.

Plants (Basel)

December 2024

The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832003, China.

Lodging resistance is one of the most important traits of machine-picked cotton. Lodging directly affects the cotton yield, quality and mechanical harvesting effect. However, there are only a few reports on the lodging resistance of cotton.

View Article and Find Full Text PDF

RNA virus-induced excessive inflammation and impaired antiviral interferon (IFN-I) responses are associated with severe disease. This innate immune response, also referred to as "dysregulated immunity" is caused by viral single-stranded RNA (ssRNA)- and double-stranded-RNA (dsRNA)-mediated exuberant inflammation and viral protein-induced IFN antagonism. However, key host factors and the underlying mechanism driving viral RNA-mediated dysregulated immunity are poorly defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!