The effects of bioturbation in marine sediments are mainly associated with an increase in oxic and oxidized zones through an influx of oxygen-rich water deeper into the sediment and the rapid transport of particles between oxic and anoxic conditions. However, macrofaunal activity also can increase the occurrence of reduced microniches and anaerobic processes, such as sulfate reduction. Our goal was to determine the two-dimensional distribution of microniches associated with burrows of a ghost shrimp (Neotrypaea californiensis) and to determine microbial activities. In laboratory experiments, detailed measurements of sulfate reduction rates (SRR) were measured by injecting, in a 1 cm grid, radiolabelled sulfate directly into a narrow aquarium (40 cm × 30 cm × 3 cm) containing the complex burrow of an actively burrowing shrimp. Light-coloured oxidized burrow walls, along with black reduced microniches, were clearly visible through the aquarium walls. Direct injection of radiotracers allowed for whole-aquarium incubation to obtain two-dimensional documentation of sulfate reduction. Results indicated SRR were up to three orders of magnitude higher (140-790 nmol SO(4) (2-) cm(-3) day(-1) ) in reduced microniches associated with burrows when compared with the surrounding sediment. Additionally, some of the subsurface sulfate-reducing microniches associated with the burrow system appeared to be zones of dinitrogen fixation. Bioturbation may also lead to decreased sulfate reduction in other microniches and the sum of the activity in all microniches might not result in a total increase of sulfate reduction compared with non-bioturbated control sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-2920.2010.02279.x | DOI Listing |
Microbes Environ
March 2025
Department of Biological Sciences, Tokyo Metropolitan University.
The present study exami-ned bacteria that anaerobically degrade the aromatic compound, benzoate, and obtained enrichment cultures from marine sediments under illumination. The enrichment culture contained anoxygenic photosynthetic bacteria and non-photosynthetic bacteria. The photosynthetic strain PS1, a purple sulfur bacterium in the genus Marichromatium, was unable to utilize benzoate; however, when combined with the non-photosynthetic bacterial isolate, Marinobacterium sp.
View Article and Find Full Text PDFEnviron Geochem Health
March 2025
Department of Geology, V.O.Chidambaram College, Thoothukudi, India.
Submarine Groundwater Discharge (SGD) has a global impact, affecting coastal aquifers, the freshwater environment, and contributing to coastal development. The present study investigates the impact of Submarine Groundwater Discharge (SGD) on groundwater geochemistry along the coast from Chettikulam to Kolachel in Southern India, with an emphasis on regional changes pre and post monsoons in the years 2023-2024. A total of 80 groundwater samples (40 from both monsoons) were analyzed using hydrochemical plots such as Piper, Wilcox, Gibbs, and Hydrochemical Facies Evolution Diagrams (HFE-D), along with AquaChem software and spatial mapping techniques.
View Article and Find Full Text PDFMicrob Ecol
March 2025
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de Mexico, México.
Bacteria and Archaea are microorganisms that play key roles in the biogeochemical transformations that control water quality in freshwater ecosystems, such as in reservoirs. In this study, we characterize the prokaryotic community of a high-relevance tropical eutrophic reservoir using a 16S rRNA gene survey during a low-water level fluctuation period mainly used for storage, associating the distribution of these microorganisms with the hydrogeochemical conditions of the water column. Our findings revealed that diversity and structure of the prokaryotic community exhibited spatio-temporal variations driven by the annual circulation-stratification hydrodynamic cycle and are significantly correlated with the concentrations of dissolved oxygen (DO), soluble reactive phosphorus (SRP), and dissolved inorganic nitrogen (DIN).
View Article and Find Full Text PDFEnviron Microbiol Rep
April 2025
School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa.
This study investigated the suitability of readily available and naturally occurring sources of microorganisms (inoculum) to use for the cultivation of sulphate-reducing bacteria (SRB) for acid mine drainage (AMD) remediation. The selected inocula included AMD water (AMD), mud (MUD) and reed-bed mud (RM) from the AMD surrounds, mealworms (MW), cow dung (CD) and raw sewage sludge (RS). The suitability of the different inoculum sources was evaluated by comparing the SO reduction and sulfide (S) production rates at three different pHs.
View Article and Find Full Text PDFWater Environ Res
March 2025
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, P. R. China.
Persulfate-based advanced oxidation processes (PS-AOPs) catalyzed by carbon-based catalysts are promising for removing organic pollutants via radical/non-radical pathways. However, the activation efficiency of peroxymonosulfate (PMS) or peroxydisulfate (PDS) usage and the reaction mechanism remain insufficiently understood. In this study, the effects of PMS/PDS dosage on the degradation of bisphenol A (BPA, 10 mg/L) were evaluated using N-doped biochar (N-BC, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!