A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epitaxial-like growth of anisotropic mesostructure on an anisotropic surface of an oblique nanocolumnar structure. | LitMetric

Tetrahedral amorphous carbon (ta-C) films with nanoscale structural anisotropy, which are obliquely deposited on a substrate by a filtered cathodic vacuum arc deposition (FAD) technique, allow anisotropic growth of mesostructured silica films thereon. The ta-C films have a uniformly tilted nanoscale columnar structure, which is caused by the self-shadowing effect during the oblique deposition, and consequently, the surface of the film can be morphologically anisotropic when the deposition angle is large enough. When silica films with a two-dimensional hexagonal mesostructure are grown under hydrothermal conditions on these ta-C films, the cylindrical mesochannels are aligned perpendicularly to the deposition direction of ta-C. The distribution of the in-plane alignment direction of the mesochannels can be controlled by the deposition angle of ta-C; it becomes narrower with the increase of the deposition angle and the consequent increase of the surface roughness. The observed alignment of the mesochannels is caused by the anisotropic accommodation of the surfactant molecules on the structurally anisotropic surface of the ta-C films, which is consistent with the fact that the ta-C films prepared at small deposition angles with smoother surface morphology have little alignment controllability. The ta-C film can be removed with the surfactant by calcination, allowing the formation of an aligned mesoporous silica film directly on a substrate. In contrast to this, obliquely evaporated SiO(2) films with a distinct tilted columnar structure and an anisotropic surface morphology provide neither continuous film formation nor controlled alignment of mesochannels even after providing hydrophobicity by a silylation process. This suggests the specificity, in particular, intrinsic strong hydrophobicity, of the ta-C films for the aligned mesostructured silica film formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja102537sDOI Listing

Publication Analysis

Top Keywords

ta-c films
24
anisotropic surface
12
deposition angle
12
ta-c
9
films
9
mesostructured silica
8
silica films
8
columnar structure
8
alignment mesochannels
8
surface morphology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!