This paper studied the effects of Ca(2+) -carrier A23187 and Ca(2+) -chelator EGTA on the bud differentiation of cut flower chrysanthemum (Dendranthema grandiflorium 'Shenma') under photoperiodic induction, as well as the Ca2+ distribution and the sucrose, soluble sugar, and starch contents in 'Shenma' leaves during the differentiation. In the control, the leaf Ca2+ content was lower at the vegetative stage of apical bud (I), increased rapidly and reached a peak at the stage of initial differentiation (II), and decreased then. At stage I, the Ca2+ was mainly allocated in vacuole, cell wall, and cell lacuna; while at stage II, it was more in cytoplasm. Compared with the control, the leaf Ca2+ content of A23187-treated plants increased significantly, and the days of initiation and ending of bud differentiation were advanced by 2 days and 3 days, respectively. On the other hand, the leaf Ca2+ content of EGTA-treated plants decreased significantly, and the days of initiation and ending of bud differentiation were postponed by 4 days and 8 days, respectively. For both A23187- and EGTA-treated plants, their leaf Ca2+ at stage II was more allocated in cytoplasm. The leaf sucrose and soluble sugar contents of A23187-treated plants reached a peak on the 2nd day after treatment, and the time to reach the peak was shortened by 2 days, compared with the control, which was consistent with the peak time of Ca2+. The leaf sucrose and soluble sugar contents of EGTA-treated plants had no significant changes on the 2nd day of treatment, but increased rapidly and reached the peak on the 8th day of treatment (stage II), and then decreased. However, the leaf sucrose and soluble sugar contents during the whole period of bud differentiation were higher than those before photoperiodic induction. The leaf starch content of A23187-treated plants and the control decreased 2 days after treatment, while that of EGTA-treated plants began to decrease 8 days after treatment, and maintained at a lower level by the end of bud differentiation. The results indicated that Ca2+ and carbohydrates participated in the flower formation of chrysanthemum under photoperiodic induction.
Download full-text PDF |
Source |
---|
Int J Mol Sci
December 2024
Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.
View Article and Find Full Text PDFDev Biol
January 2025
Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan.
Cell type-specific reporter transgenic chicken lines are invaluable tools in developmental biology, allowing the visualization of dynamics and differentiation states of target cell types in living embryos. Here, we report the establishment of a new transgenic chicken line in which limb mesenchyme and apical ectodermal ridge (AER) cells are labeled with different fluorescent proteins in the embryos. The processes for generating the reporter line involved using tissue-specific promoters, the Tol2 transposon-mediated genomic integration, and clonal culture system of primordial germ cells.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
Background: Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and chronic kidney disease later in life. Prior work has implicated histone modifications in regulating kidney lineage-specific gene transcription and nephron endowment. Our earlier study suggested that ASH2L, a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development.
View Article and Find Full Text PDFPlant Physiol
January 2025
Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
Trichomes play a crucial role in plant resistance to abiotic and biotic stresses, and their development and characteristics vary across different species. This study demonstrates that trichomes of Lilium pumilum exhibit synchronized growth during flower bud differentiation and enhance the plant's adaptability to UV-B radiation and aphid infection. We identified LpNAC48, a NAC family transcription factor (TF), that interacted with the B-box (BBX) family TF LpBBX28, during trichome formation in L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!