A gene expression profile of the myocardial response to clenbuterol.

J Cardiovasc Transl Res

Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, Hill End Road, Harefield, Middlesex, UB9 6JH, UK.

Published: June 2009

Clenbuterol is currently being used as part of a clinical trial into a novel therapeutic approach for the treatment of end-stage heart failure. The purpose of this study was to determine the global pattern of myocardial gene expression in response to clenbuterol and to identify novel targets and pathways involved. Rats were treated with clenbuterol (n = 6) or saline (n = 6) for periods of 1, 3, 9, or 28 days. Rats treated for 28 days were also subject to continuous electrocardiogram analysis using implantable telemetry. RNA was extracted from rats at days 1 and 28 and used from microarray analysis, and further samples from rats at days 1, 3, 9, and 28 were used for analysis by real-time polymerase chain reaction. Clenbuterol treatment induced rapid development of cardiac hypertrophy with increased muscle mass at day 1 and elevated heart rate and QT interval throughout the 28-day period. Microarray analysis revealed a marked but largely transitory change in gene expression with 1,423 genes up-regulated and 964 genes down-regulated at day 1. Up-regulated genes revealed an unexpected association with angiogenesis and integrin-mediated cell adhesion and signaling. Moreover, direct treatment of endothelial cells cultured in vitro resulted in increased cell proliferation and tube formation. Our data show that clenbuterol treatment is associated with rapid cardiac hypertrophy and identify angiogenesis and integrin signaling as novel pathways of clenbuterol action. The data have implications both for our understanding of the physiologic hypertrophy induced by clenbuterol and for treatment of heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12265-009-9097-6DOI Listing

Publication Analysis

Top Keywords

gene expression
12
clenbuterol treatment
12
clenbuterol
8
response clenbuterol
8
heart failure
8
rats treated
8
rats days
8
microarray analysis
8
cardiac hypertrophy
8
treatment
5

Similar Publications

Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.

View Article and Find Full Text PDF

Objective: To examine the role and diagnostic potential of miR-421 in prostate cancer (PCa).

Methods: Expression data and clinical information for miR-421 were obtained from the TCGA and Genotype-Tissue Expression (GTEx) databases. Experimental validation was performed at the cellular, blood, and tissue levels to confirm miR-421 expression and its association with clinicopathological features.

View Article and Find Full Text PDF

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL.

View Article and Find Full Text PDF

miR-542-3p/PIK3R1 axis is involved in hsa_circ_0087104-mediated inhibition of esophageal squamous cell carcinoma metastasis.

Am J Cancer Res

December 2024

Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, Zhejiang, China.

Esophageal squamous cell carcinoma (ESCC), the most predominant subtype of esophageal cancer, is notorious for its high lymph node metastatic potential and poor prognosis. Growing evidence has demonstrated crucial function of circRNAs in human malignancies. However, the knowledge of circRNAs in lymph node metastasis of ESCC is still inadequate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!