Background: We previously reported the usefulness of neuromagnetic recordings for the diagnosis of disorders in peripheral nerves or the spinal cord. However, there have been no reports on incomplete conduction block of the spinal cord, which is clinically common in conditions such as cervical myelopathy. Here, we estimated the usefulness of measuring spinal cord evoked magnetic fields for evaluating incomplete conduction block.
Methods: Incomplete conduction block models of the spinal cord of the rabbit were established using a Fogarty balloon catheter that was inserted into the epidural space of the cervical spine. Electrical stimuli were applied to the lower thoracic spinal cord with an epidural catheter electrode. Spinal cord evoked potentials were recorded using epidural electrodes. Spinal cord evoked magnetic fields were recorded over the skin surface of the neck using a biomagnetometer.
Results: The decrease in the conduction velocity and amplitude at the compression site could be detected by spinal cord evoked potentials from the epidural space, confirming the spinal cord lesion. The waveforms of the magnetic fields showed a biphasic configuration. The distribution of magnetic fields showed a characteristic quadrupolar pattern propagating from caudal to cranial. After compression, the amplitude and the conduction velocity of the magnetic fields decreased, and the distribution of magnetic fields were attenuated and decelerated near the compression site especially in the trailing magnetic fields. Diagnosis of the incomplete conduction block was thus possible.
Conclusions: We report the first measurement of the spinal cord evoked magnetic field in the intact spinal cord from the skin surface and that it can be applied to incomplete conduction block of the injured spinal cord. The use of a biomagnetometer is promising as a less-invasive method for clinically evaluating spinal cord function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00776-010-1463-3 | DOI Listing |
Cureus
December 2024
Department of Orthopaedics, Tokyo Metropolitan Bokutoh Hospital, Tokyo, JPN.
Hypertrophic pachymeningitis (HP) is a rare inflammatory disease that causes the thickening of the dura mater. Its etiology is mainly classified as idiopathic or secondary, and autoimmune disease is one of the main causes of secondary HP. Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgG4-related disease are common among autoimmune diseases.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.
Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).
Sci Rep
January 2025
Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare white matter disease characterized by axonal and glial injury. Although its clinical characteristics have been described in case reports, the prevalence of CSF1R mutations in clinically suspected ALSP cases remains unclear. Herein, we analysed the frequency of CSF1R mutations in patients with probable or possible ALSP and describe the genetic, clinical, radiological, and pathological findings of ALSP cases in individuals of Korean ancestry.
View Article and Find Full Text PDFWorld Neurosurg
January 2025
Department of Neurosurgery, Hurley Medical Center, MI, USA.
Spinal cord injury (SCI) poses a complex set of physiological, psychological, and cognitive challenges that significantly affect an individual's quality of life. Analysis of longitudinal studies reveals that cognitive changes following SCI are often underestimated yet significantly impact patient's ability to adapt to their new circumstances. However, the role of neuropsychology in SCI management and rehabilitation is yet to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!