Purpose: The aim of this work was to investigate the possibility of using several bush and arboreal plant species, usually present as ornamental plants in street and parks, as environmental indicators of pollution. This is a research paper that evaluates the real possibility of using a fast and low-cost procedure to evaluate the pollution degree through data obtained from plant species growing within an urban environment.
Methods: Leaves of six different bush and arboreal species were collected from different parts of Madrid (Spain), ranging from highly polluted considered areas to medium and low contaminated ones. A total of 66 chemical elements, from major to minor and trace, were determined for every leaf sample by inductively coupled plasma-mass spectrometry. Statistical analyses were carried out using mainly box and whisker plots, linear discriminant analysis and cluster analysis.
Results: The pollution by different elements of the studied areas of Madrid cannot be considered generally dangerous for human health. The level detected for the contaminants, in general, is similar or lower than other urban cities. Pb and V concentrations in plant samples tend to increase as traffic density increases. The different studied plant species showed a different capability of accumulation of certain elements. Cedrus deodara accumulates specially Ag, Hg, Mo and V; Cupressus sempervirens, Zr; Pinus pinea, As and Sb; Nerium oleander Ni, Pb, Mo and Se; Ligustrum ovalifolium, Sc and V; and Pittosporum tobira, Ag, Cd, Rb and Sc.
Conclusions: The leaves and needles collected from bush and arboreal plants common in this city have demonstrated to be useful to evaluate the level of pollution not only through the chemical analysis but also through the recognition of the visual injury symptoms. The application of multivariate statistical techniques combined with determining of element concentration and correlation analysis has been proved to be an effective tool for reach the objectives of the present work. This allows visualising quickly the damages and leading the sampling through the points of high-level pollution, saving analysis, time and money.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-010-0350-y | DOI Listing |
Evolution
January 2025
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.
View Article and Find Full Text PDFAnn Bot
January 2025
Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná, Rua Pioneiro, 2153, Jardim Dallas, CEP 85950 000, Palotina, Paraná, Brazil.
Background: Epiphyllous bryophytes are a group of plants with complex adaptations to colonize the leaves of vascular plants and are considered one of the most specialized and sensitive groups to environmental changes. Despite their specificity and ecological importance, these plants represent a largely neglected group in relation to scientific research and ecological data. This lack of information directly affects our understanding of biodiversity patterns and compromises the conservation of this group in threatened ecosystems.
View Article and Find Full Text PDFEcotoxicology
January 2025
Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.
Wildfires have become larger and more severe in recent decades. Fire retardant is one of the most common wildfire response tools to protect against loss of life and property. Previous studies have documented various effects of fire retardant, which commonly contains chemicals used in fertilizers, on plant and invertebrate community composition.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Plant individuals within a species can differ markedly in their leaf chemical composition, forming so-called chemotypes. Little is known about whether such differences impact the microbial communities associated with leaves and how different environmental conditions may shape these relationships. We used Tanacetum vulgare as a model plant to study the impacts of maternal effects, leaf terpenoid chemotype, and the environment on the leaf bacterial community by growing plant clones in the field and a greenhouse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!