The flow pattern in the left main coronary artery has been calculated using an idealized geometry and by numerically solving the full Navier-Stokes equations for a Newtonian fluid. Two different forms for the entrance velocity profile were used, one a time-varying, flat profile and the other a time-varying, less flat velocity profile. The results obtained demonstrate the presence of secondary motions for conditions simulating flow in the left main coronary artery, with maximum secondary flow velocities being on the order of three to four percent of the maximum axial velocity. This secondary flow phenomenon has an important influence on the wall shear stress distribution, in spite of the fact that there is virtually no alteration in the axial velocity profile. The maximum ratio of the outer wall shear stress to that on the inner wall is 1.4 at a Reynolds number of Re = 270, and it increases with increasing Reynolds number, reaching a value of 1.7 at Re = 810. Although there are significant differences in the results in the immediate vicinity of the inlet for the two different forms of the entrance velocity profile used, this difference does not persist far into the tube. Independent of the choice of the entrance velocity profile, it appears that there will be significant secondary flow effects on the wall shear stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0021-9290(91)90176-nDOI Listing

Publication Analysis

Top Keywords

velocity profile
20
left main
12
main coronary
12
coronary artery
12
entrance velocity
12
secondary flow
12
wall shear
12
shear stress
12
forms entrance
8
profile time-varying
8

Similar Publications

Strong precursor softening in cubic CaSiO perovskite.

Proc Natl Acad Sci U S A

February 2025

Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom.

CaSiO[Formula: see text] perovskite (CaPv) is the last major mineral in the Earth's lower mantle whose elasticity remains largely unresolved. Here, we investigate the elasticity of CaPv using ab initio machine-learning force fields (MLFF). At room temperature, the elasticity of tetragonal CaPv determined by MLFF molecular dynamics (MD) agrees well with experimental measurements after considering temperature induced variations in the hydrostatic structure, proving the effectiveness of the method.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Seismic profiling in a coal seam enables the determination of anomalous changes in the P-wave velocity compared to reference velocity at a specific mining depth, indicating potential stress changes. This information can improve the coal exploitation processes in advance at greater depths, especially in seismic hazard areas. This study aims to update the empirical mathematical formula for calculating reference P-wave velocities in coal seams by including new data measured at greater depths.

View Article and Find Full Text PDF

In vitro comparative analysis of metabolic capabilities and inhibitory profiles of selected CYP2D6 alleles on tramadol metabolism.

Clin Transl Sci

February 2025

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, Florida, USA.

Tramadol, the 41st most prescribed drug in the United States in 2021 is a prodrug activated by CYP2D6, which is highly polymorphic. Previous studies showed enzyme-inhibitor affinity varied between different CYP2D6 allelic variants with dextromethorphan and atomoxetine metabolism. However, no study has compared tramadol metabolism in different CYP2D6 alleles with different CYP2D6 inhibitors.

View Article and Find Full Text PDF

Purpose: Maximal muscle strength is often assessed with single-joint or repetition-maximum testing. The purpose of this study was to evaluate the reliability of countermovement-jump (CMJ) velocity-load testing and assess the relationship between CMJ velocity-load kinetics and concentric-isometric-eccentric multijoint leg-extension strength tested on a robotic servomotor leg press in trained athletes.

Methods: University athletes (N = 203; 52% female) completed 3 concentric, isometric, and eccentric maximum voluntary leg-extension contractions on the robotic leg press, followed by CMJ velocity-load testing with an additional external load of 0% (CMJBW), 30% (CMJ30), and 60% (CMJ60) of body mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!