Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neuroprotection strategies in the retina aim at interference with regulatory mechanisms of cell death. To successfully target these mechanisms it is necessary to understand the molecular pathways activated in the degenerating retina. Induced retinal degeneration models, like the light damage model, give a synchronized response allowing their detailed investigation. In this study we exposed Fisher rats to a continuous white light. This induced a caspase-independent cell death in which the activation of cathepsin D has an important role via the activation of L-DNase II. Inhibition of this enzyme by intravitreal administration of pepstatin A protects photoreceptors indicating that this enzyme might be an interesting target for neuroprotection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2010.06.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!