Star-shaped poly(epsilon-caprolactone) oligomers functionalized with succinic anhydride were used as prepolymers to prepare photocrosslinked poly(ester anhydride) to evaluate their in vivo drug delivery functionality and biocompatibility. Thus, in this work, erosion, drug release and safety of the photocrosslinked poly(ester anhydride) were examined in vitro and in vivo. A small water-soluble drug, propranolol HCl (M(w) 296 g/mol, solubility 50 mg/ml), was used as the model drug in an evaluation of the erosion controlled release. Drug-free and drug-loaded (10-60% w/w) poly(ester anhydride) discoids eroded in vitro (pH 7.4 buffer, +37 degrees C) linearly within 24-48 h. A strong correlation between the polymer erosion and the linear drug release in vitro was observed, indicating that the release had been controlled by the erosion of the polymer. Similarly, in vivo studies (s.c. implantation of discoids in rats) indicated that surface erosion controlled drug release from the discoids (drug loading 40% w/w). Oligomers did not decrease cell viability in vitro and the implanted discoids (s.c., rats) did not evoke any cytokine activity in vivo. In summary, surface erosion controlled drug release and the safety of photocrosslinked poly(ester anhydride) were demonstrated in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2010.06.005DOI Listing

Publication Analysis

Top Keywords

polyester anhydride
20
drug release
20
photocrosslinked polyester
16
erosion controlled
16
surface erosion
12
controlled drug
12
drug
9
release vitro
8
vitro vivo
8
release safety
8

Similar Publications

Core-Shell PLGA Nanoparticles: In Vitro Evaluation of System Integrity.

Biomolecules

December 2024

Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia.

Article Synopsis
  • The study compared core-shell nanoparticles with a PLGA core and various polymer shells, focusing on their structural integrity.
  • Different methods were used to prepare the nanoparticles, and fluorescent labeling was employed to analyze their properties and confirm core-shell structure.
  • Results showed that the polymer shells improved cellular uptake in glioma cells and maintained structural integrity, suggesting a useful framework for nanoparticle development.
View Article and Find Full Text PDF

In homogeneous catalysis, uncovering structure-activity relationships remains very rare but invaluable to understand and rationally improve performances. Here, generalizable structure-activity relationships apply to a series of heterodinuclear polymerization catalysts featuring Co(III) and s-block metals M(I/II) (M=Na(I), K(I), Ca(II), Sr(II), Ba(II)). These are shown to apply to polycarbonate production by the ring-opening copolymerizations (ROCOP) of cyclohexene oxide (CHO) and carbon dioxide (CO), conducted at high (20 bar) and low (1 bar) CO pressures, and to polyester production by copolymerization of cyclohexene oxide and phthalic anhydride (PA).

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how incorporating cotton and polyester fibers into polypropylene (PP) composites can improve their mechanical, thermal, and rheological properties, aiming for durable materials.
  • The research finds that a balanced mix of cotton and polyester fibers maximizes tensile strength and stiffness, with different coupling agents influencing fiber-matrix adhesion and overall performance.
  • The use of recycled textile fibers not only bolsters thermal resistance and structural stability but also presents a sustainable solution that supports the circular economy by repurposing textile waste in composite manufacturing.
View Article and Find Full Text PDF

Regioselective Copolymerization of Glucose-Derived Allopyranoside Epoxide with Cyclic Anhydrides: Developing Precise Sugar-Functionalized Polyesters with Unique Altrose Linkages.

J Am Chem Soc

January 2025

Polymer Synthesis Laboratory, Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.

Article Synopsis
  • Uniform sugar-functionalized polyesters merge sugar's diverse structure with biocompatibility and biodegradability, but irregular hydroxyl group placement has hindered their synthesis.
  • A novel method using regioselective ring-opening copolymerizations (ROCOPs) allows for the creation of these polyesters with controlled properties and high glass transition temperatures, along with a pathway for producing valuable d-altrose through degradation.
  • Mechanistic studies confirm the precise reactions involved, and the polyesters can be integrated into complex multiblock copolymers, enhancing their potential applications.
View Article and Find Full Text PDF

Upcycling of Polystyrene to Aromatic Polyacids by Tandem Friedel-Crafts and Oxidation Reactions.

J Am Chem Soc

December 2024

Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Post box 2454, 3001 Leuven, Belgium.

Due to the high demand and the increasing production rate of plastic materials, vast amounts of wastes are generated every year. An important fraction of these wastes contain polystyrene (PS), which is seldom recycled, neither mechanically nor chemically. While several chemical recycling strategies have been developed, they are either very energy-demanding or produce chemicals that can hardly be employed in the synthesis of plastics (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!