Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1alpha subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1alpha as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC(50)=5.16microM). The mechanism of this inhibition did not involve suppression of HIF-1alpha protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC(50)=4.75microM). Exposure of Huh7 cells to 10microM kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10microM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.06.038DOI Listing

Publication Analysis

Top Keywords

hypoxic conditions
16
hif-1 activity
12
dietary flavonoid
8
flavonoid kaempferol
8
cancer cells
8
huh7 cells
8
kaempferol
6
cells
5
kaempferol effectively
4
effectively inhibits
4

Similar Publications

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Expression and Regulation of Hypoxia-Inducible Factor Signalling in Acute Lung Inflammation.

Cells

December 2024

First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece.

Hypoxia-inducible factors (HIFs) are central regulators of gene expression in response to oxygen deprivation, a common feature in critical illnesses. The significant burden that critical illnesses place on global healthcare systems highlights the need for a deeper understanding of underlying mechanisms and the development of innovative treatment strategies. Among critical illnesses, impaired lung function is frequently linked to hypoxic conditions.

View Article and Find Full Text PDF

Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.

View Article and Find Full Text PDF

Background: Nitrofurantoin is a prevalent antibiotic used to treat urinary tract infections. Despite nitrofurantoin's general safety, it can cause serious side effects, including acute pulmonary toxicity, fulminant hepatitis, and severe systemic inflammatory responses, which may mimic conditions such as ischemia and infection. However, reports of acute systemic inflammatory response syndrome after nitrofurantoin ingestion are uncommon in medical literature.

View Article and Find Full Text PDF

Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!