AI Article Synopsis

  • Research suggests that testosterone has a protective role against atherosclerosis, potentially through its conversion to estradiol and activation of estrogen receptors, as well as the involvement of androgens like dihydrotestosterone.
  • The study focuses on 3beta-Adiol, a compound derived from dihydrotestosterone, which shows the ability to reduce inflammation in human endothelial cells and mice aorta by reversing pro-inflammatory gene expression triggered by substances like TNF-alpha and LPS.
  • Findings indicate that the anti-inflammatory effects of 3beta-Adiol are mediated through estrogen receptors, particularly the beta isoform, while androgen receptor antagonists have minimal impact, highlighting its potential as a therapeutic target in vascular inflammation

Article Abstract

Background: An increasing body of evidence suggests that testosterone may exert beneficial effects against the development of atherosclerosis. These effects are thought to be the consequence of its conversion into estradiol and the activation of the estrogen receptors; however a direct role of androgens, such as dihydrotestosterone, has also been proposed. More recently, it has been shown that the transformation of the dihydrotestosterone to 5alpha-androstane-3alpha,17beta-diol (3alpha-diol) and 5alpha-androstane-3beta,17beta-diol (3beta-Adiol), generates two molecules unable to bind the androgen receptor, but with a high affinity for the estrogen receptors (ERs) in particular the beta isoform. As the actions of testosterone may result from the balance between androgenic and estrogenic molecules originating from its catabolism, we investigated the effects of the 3beta-Adiol on inflammatory responses in vitro in human endothelial cells and ex vivo in mice aortas.

Methods And Results: 3beta-Adiol reverts the pro-inflammatory gene expression pattern induced by TNF-alpha in HUVECs as determined by a cDNA microrray approach. Q-real-time PCR and protein array approaches confirmed that TNF-alpha-induced ICAM-1, VCAM-1 and ELAM-1 as well as MCP-1 and IL-6 induction was affected upon 3beta-Adiol pre-incubation. ICI 182780, an estrogen receptor antagonist and R,R-THC, an estrogen receptor beta antagonist, counteracted the effect of 3beta-Adiol while bicalutamide, an androgen receptor antagonist, had minor effects. 3beta-Adiol exerted a similar action on macrophages. Finally in castrated male mice, 3beta-Adiol significantly counteracted the LPS mediated mRNA induction of IL-6, ELAM-1and PECAM-1 in the aortas.

Conclusion: 3beta-Adiol reverts in vitro the TNF-alpha and LPS induced pro-inflammatory activation of endothelial cells and macrophages. 3beta-Adiol in vivo modulates the inflammatory response induced by LPS in the arterial vascular wall.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2010.05.015DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
3beta-adiol
9
inflammatory response
8
human endothelial
8
estrogen receptors
8
androgen receptor
8
effects 3beta-adiol
8
3beta-adiol reverts
8
estrogen receptor
8
receptor antagonist
8

Similar Publications

A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype.

View Article and Find Full Text PDF

An immunoregulatory and metabolism-improving injectable hydrogel for cardiac repair after myocardial infarction.

Regen Biomater

November 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity pentose phosphate pathway.

View Article and Find Full Text PDF

The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment.

View Article and Find Full Text PDF

This study investigates a method for programming immune cells using a biomaterial-based system, providing an alternative to traditional cell manipulation techniques. It addresses the limitations of engineered adoptive T cell therapies, such as T cell exhaustion, by introducing a gelatin-hyaluronic acid (GH-GMA) hydrogel system. We characterized tonsil mesenchymal stem cells (TMSCs), lymphatic endothelial cells (T-LECs), stimulated T-CD8 T cells (STCs), and GH-GMA biomaterials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!