This study investigated the effects of a newly-developed scaffold, nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA), on the attachment, proliferation and osteogenic capability of dog periodontal ligament stem cells (PDLSCs) in vitro and in vivo. Hydroxyapatite/tricalcium phosphate (HA/TCP), a commonly used bone substitute, was used as a positive control. PDLSCs isolated from dog molar were incubated in an osteogenic medium to evaluate their osteogenic differentiation in vitro, and then seeded onto nHAC/PLA and HA/TCP scaffolds. In vitro cell attachment, proliferation and differentiation were assessed by scanning electron microscopy (SEM), cell counting, 3-[4,5-dimethythiazol-2-yl]-5-[3-carboxy-phenyl]-2-[4-sulfophenyl]-2H-tetrazolium and alkaline phosphate activity, and reverse transcription-polymerase chain reaction, respectively. Finally, the constructs were implanted subcutaneously into dogs to investigate their osteogenic capacity. After osteogenic induction for 21 days, PDLSCs differentiated into osteogenic lineage, as indicated by the expressions of osteoblastic differentiation genes CoL-I, OCN and OPN mRNA, and the formation of mineral deposits. When seeded onto scaffolds, the cells attached and spread well, and retained their osteogenic phenotypes on both scaffolds. Comparatively, cell number and proliferative viability on nHAC/PLA constructs were greater than those on HA/TCP constructs (P < 0.05). Histological results showed that new bone and osteoid was formed in both groups, and histomorphometric analysis demonstrated that the amount of newly formed bone in the nHAC/PLA group was higher than that in the HA/TCP group (P < 0.05). This study suggests that nHAC/PLA can be used as a potent scaffold for alveolar bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1163/092050609X12587018007767 | DOI Listing |
Nanoscale Adv
January 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
Bone remodeling, a continuous process of resorption and formation, is essential for maintaining skeletal integrity and mineral balance. However, in cases of critical bone defects where the natural bone remodeling capacity is insufficient, medical intervention is necessary. Traditional bone grafts have limitations such as donor site morbidity and availability, driving the search for bioengineered scaffold alternatives.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.
View Article and Find Full Text PDFBiofabrication
January 2025
Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin, DO2 YN77, IRELAND.
Osteomyelitis, a severe bone infection, is an extremely challenging complication in the repair of traumatic bone defects. Furthermore, the use of long-term high-dose antibiotics in standard treatment increases the risks of antibiotic resistance. Herein, an antibiotic-free, collagen silver-doped hydroxyapatite (coll-AgHA) scaffold reinforced with a 3D printed polycaprolactone (PCL) framework was developed with enhanced mechanical properties to be used in the repair of load-bearing defects with antimicrobial properties as a preventative measure against osteomyelitis.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Endodontic Department, Changzhou Stomatological Hospital, Changzhou, China.
Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan.
Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!