The goal of the study was to evaluate the effects of rifampicin (RFP) and phenobarbital (PBT) on the plasma and gastrointestinal disposition kinetics of ivermectin (IVM) subcutaneously administered to Wistar rats. Fifty seven rats were used. Animals in Group I were the noninduced (control) group. Those in Groups II and III received a treatment with RFP (160 mg/day) and PBT (35 mg/day), respectively, both given orally during eight consecutive days as induction regimen. The IVM pharmacokinetic study was started 24 h after the RFP and PBT last administration. Animals received IVM (200 microg/kg) by subcutaneous injection. Rats were sacrificed between 6 h and 3 days after IVM administration. Blood and samples of liver tissue, intestinal wall and luminal content of jejunum were collected from each animal. IVM concentrations were measured by high performance liquid chromatography. IVM disposition kinetics in plasma and tissues was significantly modified by the PBT treatment, but not by RFP. Despite the enhanced CYP3A activity observed after the pretreatment with RPF and PBT, there were no marked changes on the percentages of IVM metabolites recovered from the bloodstream in induced and noninduced animals. An enhanced P-glycoprotein-mediated intestinal transport activity in pretreated animals (particularly in PBT pretreated rats) may explain the drastic changes observed on IVM disposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2885.2009.01129.x | DOI Listing |
Ann Surg Oncol
January 2025
Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
Introduction: Approximately 61 million individuals in the United States have a disability and face unique challenges, resulting in healthcare disparities.
Objective: We aimed to evaluate the impact of disability on postoperative outcomes and number of healthy days at home (HDAH).
Methods: Patients who underwent surgery for gastrointestinal (GI) cancer between 2017 and 2020 were identified using the Medicare database.
J Emerg Med
January 2025
Department of Emergency Medicine, Rutgers New Jersey Medical School, Newark, New Jersey.
Background: Gastrointestinal bleeding (GIB) is a common condition in the emergency department (ED) with high incidence and mortality.
Objectives: Very early risk stratification of GIB patients can sometimes be a challenge. The decision to intubate these patients is multifactorial and requires careful consideration.
Int J Pharm
January 2025
Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium. Electronic address:
The widespread prevalence of colorectal cancer and its high mortality rate emphasize the urgent need for more effective therapies. When developing new drug products, a key aspect is ensuring that sufficiently high concentrations of the active drug are reached at the site of action. Drug transporters and drug-metabolizing enzymes can significantly influence the absorption and local accumulation of drugs in intestinal tissue.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
January 2025
Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
Raloxifene has low bioavailability due to extensive glucuronidation in the intestine and the liver, and its pharmacokinetics is associated with high intra- and interindividual variability. Some of this variability could be explained by the enterohepatic recycling of raloxifene, which is driven by transporter-mediated uptake and efflux and gut microbial deglucuronidation of raloxifene glucuronides. These individual processes involved in raloxifene disposition, however, have not been characterized in full detail.
View Article and Find Full Text PDFSci Adv
December 2024
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium.
Modulating the endogenous stores of gastrointestinal hormones is considered a promising strategy to mimic gut endocrine function, improving metabolic dysfunction. Here, we exploit mouse and human knock-in and knockout intestinal organoids and show that agents used as commercial lipid excipients can activate nutrient-sensitive receptors on enteroendocrine cells (EECs) and, when formulated as lipid nanocarriers, can bestow biological effects through the release of GLP-1, GIP, and PYY from K and L cells. Studies in wild-type, dysglycemic, and gut knockout mice demonstrated that the effect exerted by lipid nanocarriers could be modulated by varying the excipients (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!