Detached wine grapes ( Vitis vinifera cv. 'Trebbiano', white skinned) were treated for 3 days with 30 kPa of CO(2) and then transferred to air for an additional 9 days to partially dehydrate (about 20% weight loss). At the end of the CO(2) treatment on withering berries, total polyphenols and flavonoids were maintained in the skin, but to a more limited extent in the pulp. An induction of the proanthocyanidin synthesis appeared to be one of the responses to the treatment because both (+)-catechin and (-)-epicatechin concentrations increased in the skin. The skin and pulp of the grape berries showed different molecular responses to a high CO(2) treatment. As revealed by microarray hybridizations, 217 and 75 genes appeared differentially expressed in the skin and pulp of treated samples, respectively. Functional categorization and gene enrichment analyses pointed out that epicarp cells undergo more pronounced changes in transcript profiling at the end of the incubation period. Highly represented categories in both tissues were related to protein, stress, transcript, RNA, and hormone (ethylene, ABA) metabolism. Fermentation, CHO metabolism, and redox regulation functional categories were represented only in the skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf100936x | DOI Listing |
Food Chem (Oxf)
June 2025
State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
Post-harvest losses and rapid fruit ripening at room temperature are major challenges in preserving fruit quality. This study aimed to reduce such losses by applying a red carotenoid pigment, bacterioruberin extracted from an sp. The carotenoid was characterized as bacterioruberin and its derivative tetra anhydrous bacterioruberin (λmax 490 nm), and an / value of 675 and 742 (M+ 1H).
View Article and Find Full Text PDFEnviron Microbiol Rep
February 2025
Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy.
Sour rot (SR) is a late-season non-Botrytis rot affecting grapevines, resulting from a complex interplay of microorganisms, including non-Saccharomyces yeasts and acetic acid bacteria. Nonmicrobial factors contributing to disease development encompass vectors (e.g.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruits and vegetables offer substantial nutritional and health benefits, but their short shelf life necessitates effective preservation methods. Conventional drying techniques, while efficient, often lead to deterioration in food quality. Recent advancements highlight the potential of infrared blanching (IRB) as a preparatory process to improve drying outcomes.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco, Italy.
Fruit dropping represents a concern in many fruit species, including L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!