Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study examined the influence of long-term (i.e., between-trial) and short-term (i.e., within-trial) predictive mechanisms on ocular pursuit during transient occlusion. To this end, we compared ocular pursuit of accelerative and decelerative target motion in trials that were presented in random or blocked-order. Catch trials in which target acceleration was unexpectedly modified were randomly interleaved in blocked-order trials. Irrespective of trial order, eye velocity decayed following target occlusion and then recovered towards the different levels of target velocity at reappearance. However, the recovery was better scaled in blocked-order trials than random-order trials. In blocked-order trials only, the reduced gain of smooth pursuit during occlusion was compensated by a change in saccade amplitude and resulted in total eye displacement (TED) that was well matched to target displacement. Subsidiary analysis indicated that three repeats of blocked-order trials was sufficient for participants to modify eye displacement compared to that exhibited in random-order trials, although more trials were required before end-occlusion eye velocity was better scaled. Finally, we found that participants exhibited evidence of a scaled response to an unexpected change in target acceleration (i.e., catch trials), although there were also transfer effects from the preceding blocked-order trials. These findings are consistent with the suggestion that on-the-fly prediction (short-term effect) is combined with memorized information from previous trials (long-term effect) to generate a persistent and veridical prediction of occluded target motion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-010-2313-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!