The anti-Parkinsonian, irreversible, selective monoamine oxidase (MAO)-B inhibitors, selegiline (deprenyl, (R)-N-methyl-N-(1-phenylpropan-2-yl) prop-2-yn-1-amine) and rasagiline (Azilect, N-propargyl-1(R)-aminoindan), have been proven to possess neuroprotective/neurorestorative activities in cell cultures and animal models of neurodegenerative diseases. Structure-activity studies provide evidence that neuroprotection is associated with some intrinsic pharmacological action of the propargylamine moiety in these drugs. This indication and recent therapeutic approaches, entailing new drug candidates possessing diverse pharmacological properties and acting on multiple targets, have stimulated the development of two multifunctional chimeric propargylamine-derivatives: 1) ladostigil (TV3326, [(N-propargyl-(3R) 1-(R)-aminoindan-5yl)-ethyl methyl carbamate)], which combines the pharmacophore of rasagiline, with the carbamate moiety of the cholinesterase inhibitor rivastigmine, as a potential treatment for Alzheimer's disease and Lewy body disease; and 2) M30 5-[(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline], where the propargylamine moiety of rasagiline was embedded onto the backbone of the neuroprotective and brain permeable iron chelator 8-hydroxyquinoline-derivative, VK28 as a potential treatment for various neurodegenerative disorders. Both multifunctional propargylamine-derivatives were found to possess neuroprotective and anti-apoptotic properties. An additional and new neuroprotective effect, shared by the propargylamine-derivative compounds, is related to their ability to regulate the processing of amyloid-beta protein precursor (AbetaPP) by the non-amyloidogenic alpha-secretase pathway. This effect was shown to involve activation of p42/44 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathway. This review will summarize and discuss current research, focused on the effect of propargylamine-related derivatives on the proteolytic processing of AbetaPP and signal transduction mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-2010-100150 | DOI Listing |
Mol Biol Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;
A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong.
Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).
Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.
Alzheimers Dement
January 2025
Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
Introduction: Plasma phosphorylated tau (p-tau) biomarkers have improved Alzheimer's disease (AD) diagnosis, but data from diverse Asian populations are limited. This study evaluated plasma p-tau217 and p-tau181 levels in Korean and Taiwanese populations.
Methods: All participants (n = 270) underwent amyloid positron emission tomography (PET) and blood tests.
Front Immunol
January 2025
College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
Alzheimer's disease (AD) is the most common neurodegenerative disorder, accounting for approximately 70% of dementia cases worldwide. Patients gradually exhibit cognitive decline, such as memory loss, aphasia, and changes in personality and behavior. Research has shown that mitochondrial dysfunction plays a critical role in the onset and progression of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!