Continuous and regulated remodelling of the cytoskeleton is crucial for many basic cell functions. In contrast to actin filaments and microtubules, it is not understood how this is accomplished for the third major cytoskeletal filament system, which consists of intermediate-filament polypeptides. Using time-lapse fluorescence microscopy of living interphase cells, in combination with photobleaching, photoactivation and quantitative fluorescence measurements, we observed that epithelial keratin intermediate filaments constantly release non-filamentous subunits, which are reused in the cell periphery for filament assembly. This cycle is independent of protein biosynthesis. The different stages of the cycle occur in defined cellular subdomains: assembly takes place in the cell periphery and newly formed filaments are constantly transported toward the perinuclear region while disassembly occurs, giving rise to diffusible subunits for another round of peripheral assembly. Remaining juxtanuclear filaments stabilize and encage the nucleus. Our data suggest that the keratin-filament cycle of assembly and disassembly is a major mechanism of intermediate-filament network plasticity, allowing rapid adaptation to specific requirements, notably in migrating cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.068080 | DOI Listing |
Sci Rep
August 2020
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, 510260, China.
The expression of hair features is an evolutionary adaptation resulting from interactions between many organisms and their environment. Elucidation of the mechanisms that underlie the expression of such traits is a topic in evolutionary biology research. Therefore, we assessed the de novo transcriptome of Atelerix albiventris at three developmental stages and compared gene expression profiles between abdomen hair and dorsal spine tissues.
View Article and Find Full Text PDFPLoS One
August 2016
Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
The keratin intermediate filament cytoskeleton protects epithelial cells against various types of stress and is involved in fundamental cellular processes such as signaling, differentiation and organelle trafficking. These functions rely on the cell type-specific arrangement and plasticity of the keratin system. It has been suggested that these properties are regulated by a complex cycle of assembly and disassembly.
View Article and Find Full Text PDFJ Cell Biol
September 2011
Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany.
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions.
View Article and Find Full Text PDFPlatelets
September 2011
The Keio-Daiichi Sankyo Project on Genetics of Thrombosis, Keio University School of Medicine, Tokyo, Japan.
Glycogen synthase kinase (GSK)-3, a constitutively active serine-threonine kinase, acts as a key regulator of major signaling pathways, including the Wnt, Hedgehog, and Notch pathways. Although a number of studies have demonstrated that GSK-3 plays a critical role in several cellular processes, such as differentiation, growth, and apoptosis, the effects of GSK-3 on platelet production have not been explored. There are two GSK-3 isoforms, GSK-3α and GSK-3β.
View Article and Find Full Text PDFJ Cell Sci
July 2010
Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany.
Continuous and regulated remodelling of the cytoskeleton is crucial for many basic cell functions. In contrast to actin filaments and microtubules, it is not understood how this is accomplished for the third major cytoskeletal filament system, which consists of intermediate-filament polypeptides. Using time-lapse fluorescence microscopy of living interphase cells, in combination with photobleaching, photoactivation and quantitative fluorescence measurements, we observed that epithelial keratin intermediate filaments constantly release non-filamentous subunits, which are reused in the cell periphery for filament assembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!