The main goal of the present work is to characterise the neutron field of an OB26 irradiation system acquired by the Nuclear Research Center of Algiers for radiation protection purposes. Extensive Monte-Carlo (MC) calculations and measurements using BF(3)- and (3)He-based neutron area dosemeters were performed to estimate the contribution, on the energy neutron spectrum, of each component present in the bunker facility of the Algerian Secondary Standard Dosimetry Laboratory (SSDL) where the irradiator has been installed. For this purpose, new irradiation configurations based on the (241)Am-Be source placed in the OB 26/2 biological shielding inside its environment have been investigated by MC simulations, and comparison with the ISO spectrum has been performed. During MC simulations, sensitivity analysis has been considered to estimate the effect of several physical parameters on the neutron fluence and dose equivalent rates. In addition, the contribution of the gamma dose equivalent rates to the total neutron dose equivalent rates was estimated for both selected source-detector distances (SDDs) 150 and 200 cm. Finally, a theoretical approach has been adopted, using MCNP5 fluence rates, to estimate the readings of the instruments taking into account their response functions. A low mean difference (12 %) between measured and predicted dose equivalent rates for two selected SDDs has been observed. Overall, the obtained MCNP5 results regarding the actual SSDL irradiation facility are particularly encouraging, but need to be supported by further experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncq166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!