Trichinella spiralis is transmitted and maintained in both a domestic and sylvatic cycle, whereby rats contribute to the spread of T. spiralis from domestic to sylvatic animals and vice versa. As a model for T. spiralis transmission in wildlife, we studied the potential of rats to act as a reservoir species for T. spiralis, by assessing experimentally its within-host infection dynamics, and simulating the between-host dynamics by a Monte Carlo approach. The distribution of parasite burden in individual rats is mathematically defined by roots of the dose response equation intersecting with the diagonal. In simulated between-host dynamics, up to 10(4) events of uninterrupted parasite transmission were observed. Histograms of parasite burdens per individual rat matched closely with the mixture of two gamma distributions, which were derived from the within-host infection dynamics. In conclusion, T. spiralis transmission persists in a population of rats when they cannibalize their own species. Rats should be included in the minimal set of wildlife species that maintain the life cycle of T. spiralis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2010.03.019 | DOI Listing |
Parasit Vectors
January 2025
School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
Background: A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation.
View Article and Find Full Text PDFVet Res
January 2025
Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
Trichinella spiralis (T. spiralis) is a highly pathogenic zoonotic nematode that poses significant public health risks and causes substantial economic losses. Understanding its invasion mechanisms is crucial.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain.
Parasitic diseases represent a significant global public health concern. Two clinically important parasites of high prevalence rates are and . However, the limitations of currently used nematocidal drugs highlight the urgent need for novel treatment approaches.
View Article and Find Full Text PDFIran J Parasitol
January 2024
Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina.
Background: The aim of this study was to investigate the survival of and in decaying wild boar tissue and assess their freezing tolerance in experimentally infected animals.
Methods: The present study was conducted in Buenos Aires City, Argentina during the 2018-2019 period. Two wild boars were used, one infected with 20,000 muscle larvae (ML) of and the other with .
Sci Rep
December 2024
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
The cytokine homologs, particularly transforming growth factor (TGF)-β, is a crucial immunomodulatory molecule and involved in growth and developmental processes in several helminths. In this study, the basic properties and functions of T. spiralis TGF-β homolog 2 (TsTGH2) were characterized using bioinformatics and molecular biology approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!