Photosystem II (PSII), a multiprotein complex mainly coded by the chloroplast genome in higher plants and algae, contains the oxygen-evolving complex with four manganese atoms responsible for the oxidation of water. After each absorption of a light quantum by pigment molecules in the light harvesting complexes of PSII, the Mn cluster advances in its oxidation states denoted from S(0) to S(4) . The S(4) state decays to S(0) in the dark with the concurrent release of molecular oxygen. Therefore, the oxygen production in PSII exposed to successive single turnover excitations follows a period-four oscillation pattern. The intensity of chlorophyll a fluorescence of PSII is also known to be influenced by the oxidation state of the Mn cluster. In the present work, fluorescence induction kinetics was measured in isolated thylakoids with various initial S-state populations settled by preflashes. The shape of the fluorescence induction traces was strongly affected by preflashes. O-J and J-I phases of the induction followed a period-four oscillation pattern. The results indicate that these changes reflect the influence of the oxidation rate of the Mn cluster on the reduction/oxidation kinetics of the primary quinone acceptor (Q(A) ) of PSII.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1751-1097.2010.00765.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!