Aims: To (i) compare the limits of detection of Bacillus anthracis spores in three soils (one Florida, one Texas, and one a commercial Garden product) by PCR using DNA extracted with five commercial extraction kits and (ii) examine if removing organic acids or adding an enrichment step utilizing a growth medium will improve the detection limits.
Methods And Results: Bacillus anthracis spores were added to soil aliquots and used immediately with a DNA extraction kit or pretreated to remove organics or incubated overnight in a selective growth medium before the DNA extraction was performed. Using hybridization and PCR assays for capC, pag and lef genes, 10(5) -10(6) B. anthracis spores were detected in untreated Florida soil, 10(4) -10(7) spores in untreated Texas soil and 10(6) -10(7) in Garden soil. Pretreatment did not reliably improve detection. DNA from untreated and pretreated soils was suitable for hybridization but not always for PCR. When 10(1) -10(2) spores were added to the soils and allowed to amplify in a growth medium selective for B. anthracis, DNA extracted using four methods reliably produced PCR acceptable DNA positive for the B. anthracis genes.
Conclusions: The quality of DNA extracted with commercial kits appears to be influenced by the soil type and pretreatment. Yet, with an enrichment step added, four of five extraction methods produced PCR suitable DNA and detected ≤10(2) spores.
Significance And Impact Of The Study: The enrichment step could enhance the detection of B. anthracis spores in soils and small samples contaminated with soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2672.2010.04774.x | DOI Listing |
PLoS Negl Trop Dis
December 2024
Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.
View Article and Find Full Text PDFMil Med
December 2024
Division of Clinical Research and Medical Management (CRMM), Institute of Nuclear Medicine & Allied Sciences (INMAS), DRDO, Delhi 110054, India.
Introduction: Anthrax, caused by the bacterium Bacillus anthracis, stands as a formidable threat with both natural and bioterrorism-related implications. Its ability to afflict a wide range of hosts, including humans and animals, coupled with its potential use as a bioweapon, underscores the critical importance of understanding and advancing our capabilities to combat this infectious disease. In this context, exploring futuristic approaches becomes imperative, as they hold the promise of not only addressing current challenges but also ushering in a new era in anthrax management.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Structural and Molecular Microbiology, Vlaams Instituut voor Biotechnologie (VIB)-Vrije Universiteit Brussel (VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels 1050, Belgium.
is a spore-forming gram-positive bacterium responsible for anthrax, an infectious disease with a high mortality rate and a target of concern due to bioterrorism and long-term site contamination. The entire surface of vegetative cells in exponential or stationary growth phase is covered in proteinaceous arrays called S-layers, composed of Sap or EA1 protein, respectively. The Sap S-layer represents an important virulence factor and cell envelope support structure whose paracrystalline nature is essential for its function.
View Article and Find Full Text PDFPathogens
October 2024
Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona P.O. Box 19, Israel.
Anthrax is a fatal zoonotic disease caused by exposure to spores. The CDC's guidelines divide anthrax treatment into three categories according to disease progression: post-exposure prophylaxis (PEP), systemic, and systemic with a suspicion of CNS infection. While the prognosis for PEP or the early treatment of systemic anthrax is very good, ingress of the bacteria into the CNS poses a substantial clinical challenge.
View Article and Find Full Text PDFPLoS Negl Trop Dis
November 2024
Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
The diagnosis of anthrax, a zoonotic disease caused by Bacillus anthracis can be complicated by detection of closely related species. Conventional diagnosis of anthrax involves microscopy, culture identification of bacterial colonies and molecular detection. Genetic markers used are often virulence gene targets such as B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!