Surface microgrooves and acid etching on titanium (Ti) have been proposed to enhance various cell behaviors. In this study, surface hydrophilicity, protein adsorption, and alkaline phosphatase activity of osteoblasts were analyzed and compared between microgrooved Ti, Ti with microgrooves and further acid etching, smooth Ti, and acid-etched smooth Ti. Correlations between the results of each experiment were analyzed using Pearson's correlation analysis, and the influential factor on alkaline phosphatase activity was determined using multiple stepwise regression analysis. Among groups, the Ti substrata with microgrooves and subsequent acid etching showed significantly greater surface hydrophilicity and alkaline phosphatase activity compared with smooth Ti, whereas the Ti substrata with only microgrooves showed the greatest protein adsorption. Multiple stepwise regression analysis determined the surface hydrophilicity of Ti as the influential factor on alkaline phosphatase activity. This study indicates that surface microgrooves and acid etching on Ti substrata enhance surface hydrophilicity, leading to increased alkaline phosphatase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1563/AAID-JOI-D-09-00144.1 | DOI Listing |
Inorg Chem
January 2025
Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China.
The rapid upsurge of metal-organic frameworks (MOFs) has sparked profound interest in their potential as proton conductors for proton exchange membrane fuel cells. However, proton-conducting behaviors of hydrophobic MOFs remain poorly understood compared with their hydrophilic counterparts, largely due to the absence of a microscopic phase separation structure akin to that found in Nafion membranes. Herein, we demonstrate a strategy for regulating the structures and proton conductivities of MOFs by separately incorporating hydrophobic -C(CF)- group alongside hydrophilic -O- and -SO- groups into organic ligands as linkers.
View Article and Find Full Text PDFBiopolymers
March 2025
Department of Chemistry, Bose Institute, Kolkata, India.
The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability.
View Article and Find Full Text PDFFood Chem X
January 2025
Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
The poor structure stability and low bioavailability of lycopene (LY) hampers the wide application in food field. Thus, it is crucial to explore novel deliver carrier for LY based on protein-flavonoid complexes. In this study, the noncovalent interaction mechanism between β-lactoglobulin (β-LG) and flavonoids (apigenin (API), luteolin (LUT), myricetin (MY), apigenin-7-O-glucoside, luteolin-7-O-glucoside, and myricetrin) under ultrasound treatment was explored.
View Article and Find Full Text PDFBiomacromolecules
January 2025
BOKU-University, Institute of Physics and Materials Science, Vienna, Peter-Jordan-Straße 82, Vienna 1190, Austria.
To understand xylan-cellulose interactions in softwood, the adsorption behavior of hexameric softwood xylan proxies with various substitutions was analyzed on the three surfaces of a hexagonal cellulose microfibril. The study found that all surfaces could bind xylan motifs, showing equally high affinity for the hydrophilic (110) and hydrophobic (100) surfaces and significantly lower affinity for the hydrophilic (11̅0) surface. Unsubstituted xylose hexamers had the highest affinity and most ordered adsorption structures, while substitutions generally reduced the affinity and regularity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:
Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!