Unique properties and reactivity of high-valent manganese-oxo versus manganese-hydroxo in the salen platform.

Inorg Chem

Institute for Molecular Science & Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan.

Published: July 2010

To gain an understanding of oxidation reactions by Mn(III)(salen), a reaction of Mn(III)(salen) with m-chloroperoxybenzoic acid in the absence of a substrate is investigated. UV-vis, perpendicular- and parallel-mode electron paramagnetic resonance, and X-ray absorption spectroscopy show that the resulting solution contains Mn(IV)(salen)(O) as a major product and Mn(IV)(salen)(OH) as a minor product. Mn(IV)(salen)(O) readily reacts with 4-H-2,6-tert-Bu(2)C(6)H(2)OH (homolytic bond dissociation energy of an OH bond, BDE(OH) = 82.8 kcal mol(-1)), 4-CH(3)CO-2,6-tert-Bu(2)C(6)H(2)OH (BDE(OH) = 83.1 kcal mol(-1)), and 4-NC-2,6-tert-Bu(2)C(6)H(2)OH (BDE(OH) = 84.2 kcal mol(-1)) at 203 K, following second-order rate kinetics. Mn(IV)(salen)(OH) reacts with 4-CH(3)CO-2,6-tert-Bu(2)C(6)H(2)OH (BDE(OH) = 83.1 kcal mol(-1)) much more slowly under identical conditions than Mn(IV)(salen)(O) and does not react with 4-NC-2,6-tert-Bu(2)C(6)H(2)OH (BDE(OH) = 84.2 kcal mol(-1)), suggesting that the thermodynamic hydrogen-atom-abstracting ability of Mn(IV)(salen)(OH) is about 83 kcal mol(-1). The rate constant for reactions of Mn(IV)(salen)(OH) with phenols is not dependent on the concentration of phenols, suggesting that Mn(IV)(salen)(OH) might bind phenols prior to the rate-limiting oxidation reactions. Quantum chemical calculations are carried out for Mn(IV)(salen)(O) and Mn(IV)(salen)(OH), both of which well reproduce the extended X-ray absorption fine structures as well as the electronic configurations. It is also indicated that protonation of Mn(IV)(salen)(OH) induces a drastic electronic structural change from manganese(IV) phenolate to a manganese(III) phenoxyl radical, which is also consistent with the experimental observation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic100673bDOI Listing

Publication Analysis

Top Keywords

kcal mol-1
24
oxidation reactions
8
x-ray absorption
8
4-ch3co-26-tert-bu2c6h2oh bdeoh
8
bdeoh 831
8
831 kcal
8
4-nc-26-tert-bu2c6h2oh bdeoh
8
bdeoh 842
8
842 kcal
8
mnivsalenoh
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!