Understanding the meaning of "dignity" is a prerequisite for all healthcare staff so they know what they need to do to promote it within their services. The Dignity in Care campaign, launched in 2006, marked the Department of Health's commitment to ensuring services respect the dignity of those using them and ended tolerance of those that do not. This article proposes a definition so that the concept can be based on a common understanding and outlines a model based on existing research, which can be used to enhance dignity in health and social care.
Download full-text PDF |
Source |
---|
Sensors (Basel)
January 2025
University of Zagreb, Faculty of Transport and Traffic Sciences, Vukelićeva 4, 10000 Zagreb, Croatia.
The possibilities of the Ambient Assisted Living (AAL)/Enhanced Living Environments (ELE) concept in the environment of a smart home were investigated to improve accessibility and improve the quality of life of a person with disabilities. This paper focuses on the concept of predictive information for a person with disabilities in a smart home environment concept where artificial intelligence (AI) and machine learning (ML) systems use data on the user's preferences, habits, and possible incident situations. A conceptual mathematical model is proposed, the purpose of which is to provide predictive user information from defined data sets.
View Article and Find Full Text PDFUrolithiasis
January 2025
Department of Urology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5330, USA.
Understanding renal pelvis pressure (P) during ureteroscopy (URS) has become increasingly important. High irrigation rates, desirable to maintain visualization and limit thermal dose, can increase P. Use of a multi-channel ureteroscope (m-ureteroscope) with a dedicated drainage channel is one strategy that may facilitate simultaneous low P and high flowrate.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Engineering, Peking University, Beijing, P.R. China.
Designing catalysts with well-defined, identical sites that achieve site-specific selectivity, and activity remains a significant challenge. In this work, we introduce a design principle of topological-single-atom catalysts (T-SACs) guided by density functional theory (DFT) and Ab initio molecular dynamics (AIMD) calculations, where metal single atoms are arranged in asymmetric configurations that electronic shield topologically misorients d orbitals, minimizing unwanted interactions between reactants and the support surface. Mn/CeO catalysts, synthesized via a charge-transfer-driven approach, demonstrate superior catalytic activity and selectivity for NO removal.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Faculty of Chemistry, Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
The concept of natural densitals (NDs) and their amplitudes is introduced. These quantities provide the spectral decomposition of the cumulant of the two-electron density that, by definition, quantifies the extent of electron correlation. Consequently, they are ideally suited for a rigorous description of electron correlation effects in Coulombic systems.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.
Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!