A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The design of polymer-based nanocarriers for effective transdermal delivery. | LitMetric

This study reports a facile and practical means to non-invasively deliver biologically active ingredients through the skin using polymer-based nanocarriers. For this, polymer nanocapsules were fabricated with different surface charges as well as glass transition temperatures and we observed their ability to deliver the encapsulated active ingredient, coenzyme Q10, through the skin layer. Direct imaging of a probe molecule, Nile Red, and a matrix polymer labeled with fluorescence moiety, Lucifer Yellow, allowed us to demonstrate that the probe molecule readily permeates into the deep skin, while the matrix polymer stays in the stratum corneum layer due to electrostatic interactions. Quantitative characterization of the penetrating amount of coenzyme Q10 using the Frantz cell method proved that, to achieve improved delivery efficiency, the nanocapsule should have a low glass transition temperature as well as positive surface charges.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201000097DOI Listing

Publication Analysis

Top Keywords

polymer-based nanocarriers
8
surface charges
8
glass transition
8
coenzyme q10
8
probe molecule
8
matrix polymer
8
design polymer-based
4
nanocarriers effective
4
effective transdermal
4
transdermal delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!