New therapies in cancer treatment are focusing on multifaceted approaches to starve and kill tumors utilizing both antiangiogenic and chemotherapeutic compounds. In this work, we searched for a peptide vector that would home liposomes both to endothelial and tumor cells. [Abu6]TSPB and [Abu6]TSPA, aspartimide analogs of natural sequences of TSP-1 and TSP-2, respectively, were tested for adhesion of tumor and endothelial cells, in vivo and in vitro antiangiogenic effects, and in vivo antitumor action. Both peptides support the adhesion of both types of cells, but only [Abu6]TSPA inhibits the angiogenesis in vivo, and [Abu6]TSPA-targeted L-DOX decreases by 58% (P < 0.008) the HT29 tumor growth in nude mice. The improvement in the doxorubicin antitumor effect should be attributed to the antiangiogenic effect of [Abu6]TSPA, since [Abu6]TSPB, despite being a good ligand for both cell types, had no effect on tumor growth.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.1241DOI Listing

Publication Analysis

Top Keywords

tumor growth
8
improved therapeutic
4
therapeutic responses
4
responses liposomal
4
liposomal doxorubicin
4
doxorubicin targeted
4
targeted thrombospondin
4
thrombospondin peptidomimetics
4
peptidomimetics versus
4
versus untargeted
4

Similar Publications

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!