A time-dependent quantitative exposure assessment of silica exposure among nearly 18,000 German porcelain workers was conducted. Results will be used to evaluate exposure-response disease risks. Over 8000 historical industrial hygiene (IH) measurements with original sampling and analysis protocols from 1954-2006 were obtained from the German Berufs- genossenschaft der keramischen-und Glas-Industrie (BGGK) and used to construct a job exposure matrix (JEM). Early measurements from different devices were converted to modern gravimetric equivalent values. Conversion factors were derived from parallel historical measurements and new side-by-side measurements using historical and modern devices in laboratory dust tunnels and active workplace locations. Exposure values were summarized and smoothed using LOESS regression; estimates for early years were derived using backward extrapolation techniques. Employee work histories were merged with JEM values to determine cumulative crystalline silica exposures for cohort members. Average silica concentrations were derived for six primary similar exposure groups (SEGs) for 1938-2006. Over 40% of the cohort accumulated <0.5 mg; just over one-third accumulated >1 mg/m(3)-years. Nearly 5000 workers had cumulative crystalline silica estimates >1.5 mg/m(3)-years. Similar numbers of men and women fell into each cumulative exposure category, except for 1113 women and 1567 men in the highest category. Over half of those hired before 1960 accumulated >3 mg/m(3)-years crystalline silica compared with 4.9% of those hired after 1960. Among those ever working in the materials preparation area, half accumulated >3 mg/m(3)-year compared with 12% of those never working in this area. Quantitative respirable silica exposures were estimated for each member of this cohort, including employment periods for which sampling used now obsolete technologies. Although individual cumulative exposure estimates ranged from background to about 40 mg/m(3)-years, many of these estimates reflect long-term exposures near modern exposure limit values, allowing direct evaluation of lung cancer and silicosis risks near these limits without extrapolation. This quantitative exposure assessment is the largest to date in the porcelain industry.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15459624.2010.487789DOI Listing

Publication Analysis

Top Keywords

crystalline silica
16
exposure assessment
12
exposure
10
silica exposure
8
german porcelain
8
porcelain industry
8
quantitative exposure
8
cumulative crystalline
8
silica exposures
8
accumulated mg/m3-years
8

Similar Publications

Objective: The mucosal origin hypothesis in rheumatoid arthritis (RA) posits that inhalant exposures, such as cigarette smoke and crystalline silica (c-silica), trigger immune responses contributing to disease onset. Despite the established risk posed by these exposures, the mechanistic link between inhalants, lung inflammation, and inflammatory arthritis remains poorly understood, partly from the lack of a suitable experimental model. As c-silica accelerates autoimmune phenotypes in lupus models and is a recognized risk factor for several autoimmune diseases, we investigated whether c-silica exposure could induce RA-like inflammatory arthritis in mice.

View Article and Find Full Text PDF

Influence of macrophages and neutrophilic granulocyte-like cells on crystalline silica-induced toxicity in human lung epithelial cells.

Toxicol Res (Camb)

February 2025

Département Toxicologie et Biométrologie, Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), 1 rue du Morvan, 54519 Vandœuvre-lès-Nancy, France.

In many industrial activities, workers may be exposed by inhalation to particles that are aerosolized, To predict the human health hazard of these materials, we propose to develop a co-culture model (macrophages, granulocytes, and alveolar epithelial cells) designed to be more representative of the inflammatory pulmonary response occurring in vivo. Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were used as macrophages, All-trans retinoic acid (ATRA)-differentiated HL60 were used as granulocytes and A549 were used as epithelial alveolar type II cells. A crystalline silica sample DQ12 was used as a prototypical particle for its capabilities to induce DNA damage, inflammatory response, and oxidative stress in epithelial cells; its polyvinylpyridine-N-oxide (PVNO)-surface modified counterpart was also used as a negative particulate control.

View Article and Find Full Text PDF

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.

View Article and Find Full Text PDF

All-Optical Generation and Detection of Coherent Acoustic Vibrations in Single Gallium Phosphide Nanoantennas Probed near the Anapole Excitation.

Nano Lett

January 2025

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!