Purpose: Multidrug resistance (MDR) remains a major obstacle to successful chemotherapeutic treatment of cancer. Several chemotherapeutic and radiopharmaceutical agents are substrates of the pumps encoded by the MDR genes, and therefore, their accumulation is prevented. We evaluated in vivo whether [(99m)Tc]tetrofosmin ((99m)Tc-TF) uptake is influenced by the MDR profile of gliomas.
Procedures: Eighteen patients with histologically confirmed glioma were included in the study. Brain single-photon emission computed tomography by (99m)Tc-TF was performed within a week prior to surgical excision, and the expression of MRP5 was assessed by immunohistochemistry. Radiotracer accumulation was assessed by a semiquantitative method, calculating the lesion-to-normal uptake ratio.
Results: Using Spearman's ρ analysis, we found no correlation between tracer uptake expressed as lesion-to-normal and MRP5 expression. There was a significant correlation between glioma aggressiveness as assessed by Ki-67/MIB-1 and MRP5 expression.
Conclusion: The present data suggest that (99m)Tc-TF uptake is not influenced by glioma's MDR phenotype. Thus, (99m)Tc-TF constitutes a suitable radiotracer for imaging gliomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11307-010-0369-y | DOI Listing |
Antimicrob Agents Chemother
January 2025
Norton Infectious Diseases Institute, Norton Healthcare, Louisville, Kentucky, USA.
Omadacycline is a novel antimicrobial belonging to the tetracycline class. It has the ability to evade both efflux and ribosomal methylation types of resistance and therefore has an expanded spectrum compared to other tetracycline agents. Omadacycline is active against a number of multidrug-resistant bacteria, including macrolide and doxycycline-resistant methicillin-resistant (MRSA), vancomycin-resistant Enterococcus, and several enteric gram-negative bacilli.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting , was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Second Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China.
Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Background: Antimicrobial resistance is a global public health emergency. Patients undergoing hematopoietic stem cell transplantation (HCT) are at increased risk for severe infections with multidrug-resistant (MDR) organisms, although more data are needed on the relative burden of MDR Enterobacterales (MDR-E) in immunocompromised populations. In this study, we compare the prevalence of Enterobacterales resistance in cultures from patients undergoing HCT with that of non-HCT patients seeking care at a large healthcare system in North Carolina, USA.
View Article and Find Full Text PDFFront Antibiot
January 2024
Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!